首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(E)-5-(2-Bromovinyl)-2'-deoxyuridine 5'-triphosphate (BrVdUTP) and (E)-5-(2-bromovinyl)-1-beta-D-arabinofuranosyluracil 5'-triphosphate (BrVarafUTP), which are known as specific inhibitors of herpes simplex viral (type 1 and 2) DNA polymerase, were found to be strong inhibitors of DNA polymerase gamma from human KB and murine myeloma cells. In fact BrVdUTP and BrVarafUTP were found to be stronger inhibitors of DNA polymerase gamma than of other DNA polymerases having viral (herpes simplex virus or retrovirus) origin or cellular (eukaryotic alpha and beta, or prokaryotic) origin. The mode of inhibition of DNA polymerase gamma by BrVdUTP and BrVarafUTP was competitive with respect to dTTP, the normal substrate. Whereas BrVdUTP was an efficient substrate for DNA polymerase gamma and other DNA polymerases that were examined, BrVarafUTP failed to serve as a substrate for DNA synthesis. Ki values for BrVdUTP (40 nM) and BrVarafUTP (7 nM) with DNA polymerase gamma, as determined with (rA)n.(dT) as the template.primer, were much smaller than the Km values for dTTP (0.16 microM and 0.71 microM for murine and human DNA polymerase gamma, respectively). Thus, the affinity of BrVdUTP or BrVarafUTP for DNA polymerase gamma was much stronger than that of dTTP.  相似文献   

2.
Zhao X  Shang Y  Hu J  Liu H  Hu Y 《Biophysical chemistry》2008,138(3):144-149
The interaction between DNA and cationic gemini surfactant trimethylene-1, 3-bis (dodecyldimethylammonium bromide) (12-3-12) has been investigated by the measurements of fluorescence, surface tension, UV spectrum and circular dichroism (CD). Micelle-like structure of 12-3-12 induced by DNA appears at critical aggregation concentration (CAC), which is much lower than critical micelle concentration (CMC) of 12-3-12 in DNA-free solution. CAC is independent of DNA concentration, but the CMC of the mixed solutions of DNA and 12-3-12(CMC(mix)) increases with the increasing of DNA concentration. The surface tensions of the mixed system are higher than that of the pure surfactant solution, much different from the so-called synergistic lowering of the surface tension for other polymer-surfactant systems. Phase separation occurs after the neutralization point and the precipitate redissolves with superfluous 12-3-12. Cationic surfactant 12-3-12 can exclude ethidium bromide (EB) from the DNA/EB complex, and this process does not depend on the DNA concentration but on the charge ratio of 12-3-12 to DNA. The binding constant of EB to DNA decreases sharply at the charge ratio from 0.5 to 1.0. Circular dichroism (CD) spectra show that DNA undergoes a conformational transition from native B-form to chiral psi-phase with increasing of 12-3-12.  相似文献   

3.
4.
A series of new 2-(1-(2-(substituted-phenyl)-5-methyloxazol-4-yl)-3-(2-substitued-phenyl)-4,5-dihydro-1H-pyrazol-5-yl)-7-substitued-1,2,3,4-tetrahydroisoquinoline derivatives were synthesized. The results showed that compounds 9q and 10q can strongly inhibit Staphylococcus aureus DNA gyrase and Bacillus subtilis DNA gyrase (with IC50s of 0.125 and 0.25 μg/mL against S. aureus DNA gyrase, 0.25 and 0.125 μg/mL against B. subtilis DNA gyrase). On the basis of the biological results, structure–activity relationships were also discussed.  相似文献   

5.
Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex   总被引:9,自引:0,他引:9  
Genotoxic stress activates checkpoint signaling pathways that block cell cycle progression, trigger apoptosis, and regulate DNA repair. Studies in yeast and humans have shown that Rad9, Hus1, Rad1, and Rad17 play key roles in checkpoint activation. Three of these proteins-Rad9, Hus1, and Rad1-interact in a heterotrimeric complex (dubbed the 9-1-1 complex), which resembles a PCNA-like sliding clamp, whereas Rad17 is part of a clamp-loading complex that is related to the PCNA clamp loader, replication factor-C (RFC). In response to genotoxic damage, the 9-1-1 complex is loaded around DNA by the Rad17-containing clamp loader. The DNA-bound 9-1-1 complex then facilitates ATR-mediated phosphorylation and activation of Chk1, a protein kinase that regulates S-phase progression, G2/M arrest, and replication fork stabilization. In addition to its role in checkpoint activation, accumulating evidence suggests that the 9-1-1 complex also participates in DNA repair. Taken together, these findings suggest that the 9-1-1 clamp is a multifunctional complex that is loaded onto DNA at sites of damage, where it coordinates checkpoint activation and DNA repair.  相似文献   

6.
The DNA targets may be labeled and simultaneously amplified in the polymerase chain reaction (PCR) using a pair of respective primers after elongation with nucleoside-5'-triphosphates carrying photoreactive groups. The amplified DNA may be subsequently photoactivated by irradiation above 300 nm, resulting in photo-cross-linking of the strands. For this goal 5-[3-(E)-(4-azido-2,3,5,6-tetrafluorobenzamido)propenyl-1]-, 5-{N-[N'-(4-azido-2,3,5, 6-tetrafluorobenzoyl)-3-aminopropionyl]aminomethyl}-, and 5-{N-[N'-(2-nitro-5-azidobenzoyl)-3-aminopropionyl]aminomethyl}-2'-de oxyuridine-5'-triphosphate (VII, VIa, and VIb) derivatives have been synthesized. It was found that VII is capable of efficiently elongating DNA primers with both Klenow fragment DNA polymerase I and Thermus aquaticus DNA polymerase. Thereto, it turned out to provide quantitative incorporation in DNA as revealed by the formation of the full-length amplificate by PCR in the presence of this photoreactive analogue without any dilution with natural dTTP. On the contrary, it was found, that incorporation of VIa and VIb do not permit further DNA replication.  相似文献   

7.
Cruciforms are secondary DNA structures, serving as recognition signals at or near eukaryotic (yeast and mammalian) origins of DNA replication. The cruciform-binding protein is a member of the 14-3-3 protein family and binds to origins of DNA replication in a cell cycle-dependent manner. Five 14-3-3 protein isoforms (beta, gamma, epsilon, zeta and sigma) have been identified as having cruciform binding activity.  相似文献   

8.
Human cytomegalovirus-induced DNA polymerase and cellular DNA polymerase alpha were purified by successive chromatography on DEAE-cellulose, phosphocellulose, heparin agarose, and single-stranded DNA agarose columns. The purified virus-induced DNA polymerase was resolved to consist of two polypeptides corresponding to molecular weights of 140,000 and 58,000, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Virus-induced DNA polymerase and cellular alpha polymerase were examined for their sensitivities to the triphosphates of 1-(2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl)-5-methyluracil (FMAUTP), -5-iodocytosine (FIACTP), and -5-methylcytosine (FMACTP). The inhibitive effects of these triphosphates on the DNA polymerases were competitive with regard to the natural substrates; thus FMAUTP competes with dTTP, and FIACTP and FMACTP compete with dCTP. The inhibition constants (Ki) for FMAUTP, FIACTP, and FMACTP of virus-induced DNA polymerase are 0.06, 0.30, and 0.47 microM, respectively. Cellular DNA polymerase alpha is much less sensitive to these inhibitors, and its Ki values for FMAUTP, FIACTP, and FMACTP are 0.45, 3.10, and 2.90 microM, respectively. In addition, human cytomegalovirus-induced DNA polymerase, but not cellular DNA polymerase alpha, can utilize these analog triphosphates as alternate substrates for their corresponding natural deoxyribonucleoside triphosphates in in vitro DNA synthesis.  相似文献   

9.
The interaction of the radioprotector 1-methyl-2-[2-(methylthio)-2-piperidinovinyl]quinolinium iodide (VQ) with linear and supercoiled pIBI30 DNA was studied by flow linear dichroism spectroscopy, equilibrium dialysis, circular dichroism, and UV absorption spectroscopy. The negative linear dichroism spectra of VQ-DNA complexes throughout the 220-500 nm wavelength region, a red shift in the VQ main absorption band (at 452 nm) of 1-2 nm upon binding to DNA, and a concentration-dependent unwinding of supercoiled DNA suggest that the primary mode of interaction of VQ with DNA (at least at low concentrations) is intercalative in nature. A least-squares analysis of the equilibrium dialysis binding of VQ to supercoiled DNA using the McGhee-von Hippel equation gives an association constant K = 7300 +/- 300 M-1, and an exclusion number n in the range of 3.3-5.3. The lower value of n is obtained when effects of polyelectrolytes are also taken into account. Because quinolinium iodide derivatives with different substituents and DNA binding affinities can be synthesized, this family of compounds could be employed to probe relationships, if any, between radioprotective efficacy and DNA binding affinity.  相似文献   

10.
Single-stranded DNA (ssDNA) at DNA ends is an important regulator of the DNA damage response. Resection, the generation of ssDNA, affects DNA damage checkpoint activation, DNA repair pathway choice, ssDNA-associated mutation and replication fork stability. In eukaryotes, extensive DNA resection requires the nuclease Exo1 and nuclease/helicase pair: Dna2 and Sgs1BLM. How Exo1 and Dna2-Sgs1BLM coordinate during resection remains poorly understood. The DNA damage checkpoint clamp (the 9-1-1 complex) has been reported to play an important role in stimulating resection but the exact mechanism remains unclear. Here we show that the human 9-1-1 complex enhances the cleavage of DNA by both DNA2 and EXO1 in vitro, showing that the resection-stimulatory role of the 9-1-1 complex is direct. We also show that in Saccharomyces cerevisiae, the 9-1-1 complex promotes both Dna2-Sgs1 and Exo1-dependent resection in response to uncapped telomeres. Our results suggest that the 9-1-1 complex facilitates resection by recruiting both Dna2-Sgs1 and Exo1 to sites of resection. This activity of the 9-1-1 complex in supporting resection is strongly inhibited by the checkpoint adaptor Rad953BP1. Our results provide important mechanistic insights into how DNA resection is regulated by checkpoint proteins and have implications for genome stability in eukaryotes.  相似文献   

11.
14-3-3 proteins are conserved multifunctional molecules, involved in many biological processes. Several 14-3-3 isoforms were recently shown to be cruciform DNA-binding proteins, which is a new activity ascribed to the 14-3-3 family. As cruciform-binding proteins, 14-3-3 proteins are putatively involved in the regulation of DNA replication. Inverted repeat sequences that are able to extrude into cruciform structures are a common feature of replication origins in both prokaryotes and eukaryotes. The involvement of cruciform structures in the initiation of DNA replication has been demonstrated. A leading model of 14-3-3 function proposes that they facilitate critical protein-protein interactions, thus serving as a central component of a wide variety of cellular processes.  相似文献   

12.
DNA (6-4) photoproducts are major constituents of ultraviolet-damaged DNAs. We prepared double-stranded (ds) (6-4) DNA photoproducts and analyzed formation of their complexes with anti-(6-4) photoproduct antibody Fabs. Elution profiles of the mixtures of ds-(6-4) DNAs and Fabs from anion-exchange and gel-filtration columns indicate that Fab 64M-2 deprives 14mer ds-(6-4) DNA of single-stranded (ss) (6-4) DNA and shows no interaction with 18 mer ds-(6-4) DNA (A18). Fab 64M-5 with an approximately 100-fold higher affinity than Fab 64M-2 forms a complex with the ds-(6-4) DNA (A18), but partly dissociates another 18 mer ds-(6-4) DNA (A18-3), with a lowered G-C content, into ss-DNAs. From these results, antibody 64M-5 possibly accommodates the T(6-4)T photolesion moiety of the ds-(6-4) DNA (A18) by flipping out the moiety from its neighboring segments.  相似文献   

13.
DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resection in budding yeast. We show that the major effect of 9-1-1 is to inhibit resection by promoting the recruitment of Rad953BP1 near DSBs. However, 9-1-1 also stimulates resection by Exo1- and Dna2-Sgs1-dependent nuclease/helicase activities, and this can be observed in the absence of Rad953BP1. Our new data resolve the controversy in the literature about the effect of the 9-1-1 complex on DSB resection. Interestingly, the inhibitory role of 9-1-1 on resection is not observed near uncapped telomeres because less Rad953BP1 is recruited near uncapped telomeres. Thus, 9-1-1 both stimulates and inhibits resection and the effects of 9-1-1 are modulated by different regions of the genome. Our experiments illustrate the central role of the 9-1-1 checkpoint sliding clamp in the DNA damage response network that coordinates the response to broken DNA ends. Our results have implications in all eukaryotic cells.  相似文献   

14.
15.
16.
Human DNA topoisomerase IIalpha (topo II), a ubiquitous nuclear enzyme, is essential for normal and neoplastic cellular proliferation and survival. Several common anticancer drugs exert their cytotoxic effects through interaction with topo II. In experimental systems, altered topo II expression has been associated with the appearance of drug resistance. This mechanism, however, does not adequately account for clinical cases of resistance to topo II-directed drugs. Modulation by protein-protein interactions represents one mechanism of topo II regulation that has not been extensively defined. Our laboratory has identified 14-3-3epsilon as a topo II-interacting protein. In this study, glutathione S-transferase co-precipitation, affinity column chromatography, and immunoprecipitations confirm the authenticity of these interactions. Three assays evaluate the impact of 14-3-3epsilon on distinct topo II functional properties. Using both a modified alkaline comet assay and a DNA cleavage assay, we demonstrate that 14-3-3epsilon negatively affects the ability of the chemotherapeutic, etoposide, to trap topo II in cleavable complexes with DNA, thereby preventing DNA strand breaks. By electrophoretic mobility shift assay, this appears to be due to reduced DNA binding activity. The association of topo II with 14-3-3 proteins does not extend to all 14-3-3 isoforms. No protein interaction or disruption of topo II function was observed with 14-3-3final sigma.  相似文献   

17.
DNA damage checkpoints are critical for preventing tumorigenesis and regulating the response of cells to genotoxic agents. It is believed that the coordinated actions of a number of effectors underlie proper checkpoint function. The kinase Chk2, p21, and 14-3-3σ have each been shown to be independent effectors of the G2 DNA damage checkpoint. However, the relative roles of these proteins remain unclear. To help elucidate this question, we have perturbed each of these 3 genes in combination in human cells. We show that Chk2 depletion causes markedly increased sensitivity to DNA damage in p21-/-, 14-3-3σ-/- cells but not in cells lacking only one or none of these genes. This greater sensitivity was due to an increase in apoptosis following DNA damage and not due to exacerbation of G2 checkpoint defects. Pharmacologic inhibition of Chk2 in p21-/-, 14-3-3σ-/- cells also resulted in greater sensitivity to DNA damage. Our data indicates that p21 and 14-3-3σ synergize as molecular determinants of sensitivity to DNA damage following Chk2 inhibition, and Chk2 modulates the biological rheostat that determines whether a cancer cell undergoes arrest versus death after treatment with a chemotherapeutic agent. These findings have implications for the targeting of Chk2 in human cancers.  相似文献   

18.
The carbocyclic analogue of (E)-5-(2-bromovinyl)-2'-deoxyuridine, C-BVDU, is a very potent and selective anti-herpes-virus compound. In order to synthesize and study the properties of a DNA that contains C-BVDU, the 5'-triphosphate, C-BVDUTP was prepared and evaluated as a potential substrate of the E. coli Klenow DNA polymerase enzyme. Although C-BVDUTP proved to be a very poor substrate also of this enzyme, it could be incorporated up to 3.6% into the synthetic DNA, poly(dA-dT, C-BVDU). This level of substitution decreased significantly the template activity for DNA and RNA polymerases, as compared to that of poly(dA-dT).  相似文献   

19.
Time course of incorporation and the effect of 5'-triphosphate of the selective antiherpetic agent (E)-5-(2-bromovinyl)-2'-deoxyuridine (bv5dUTP) on the incorporation of dTTP and dATP into template-primers of different structure were studied in E. coli DNA polymerase I Klenow fragment enzyme-catalyzed reactions. bv5dUTP could substitute for dTTP depending on the structure of template-primer. E.g. into calf thymus DNA incorporation of bv5dUMP was around 80% of that of dTMP at 30 minutes of incubation. The analog has also inhibited dTMP incorporation, net DNA synthesis, however, was hardly affected. The substrate properties of the analog were studied with [2-14C]-labelled bv5dUTP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号