首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An effective approach to promote sequence-specific RNA cleavage by an antisense 2′-O-methyloligonucleotide with a terpyridine · Cu(II) complex attached at the 5′-end was developed. We have synthesized a Cu(II) complex 3′-conjugate, which when used in a tandem fashion, greatly enhanced the RNA cleavage efficiency.  相似文献   

2.
In an approach toward artificial ribonucleases, novel RNA cleaving systems were constructed that contained two terpyridine.Cu(II) residues. The first antisense system used tandem Cu(II) complex--2'-O-methyloligonucleotide 5'- and 3'-conjugates to cleave an RNA substrate. The second system, which will be described in a future paper, contained two contiguous Cu(II) complex residues at an internal site of a 2'-O-methyloligonucleotide. We found that the first system rapidly cleaved RNA with high site-specificity. Based on these results, we expect the second system to also show efficient RNA cleavage.  相似文献   

3.
Brazilin, a traditional medicine for the treatment of pain and inflammation, forms a complex with Cu(II) in the presence as well as the absence of DNA. The Cu(II)-brazilin complex exhibited the strand cleavage activity for the pBR322 supercoiled DNA, converting supercoiled form to nicked form. The presence of various scavengers for the oxygen species suppresses or reduces the cleavage activity of the complex, indicating that the DNA cleavage is oxidative. The binding mode of the Cu(II)-brazilin complex was studied by absorption and CD spectroscopy. While a large metal-to-ligand charge transfer (MLCT) band was apparent when Cu(II) and brazilin was mixed in the presence and absence of DNA, the CD did not show any signal in the same region in the presence of DNA, suggesting a weak interaction between the Cu(II)-brazilin complex and DNA bases.  相似文献   

4.
Dramatic improvements in ribozyme mimics have been achieved by employing the principles of small molecule catalysis to the design of macromolecular, biomimetic reagents. Ribozyme mimics derived from the ligand 2,9-dimethylphenanthroline (neocuproine) show at least 30-fold improvements in efficiency at sequence-specific RNA cleavage when compared with analogous o-phenanthroline- and terpyridine-derived reagents. The suppression of hydroxide-bridged dimers and the greater activation of coordinated water by Cu(II) neocuproine (compared with the o-phananthroline and terpyridine complexes) better allow Cu(II) to reach its catalytic potential as a biomimetic RNA cleavage agent. This work demonstrates the direct mapping of molecular design principles from small-molecule cleavage to macromolecular cleavage events, generating enhanced biomimetic, sequence-specific RNA cleavage agents.  相似文献   

5.
The hydrolysis of a 5' cap analogue, diadenosinyl-5',5'-triphosphate (ApppA), and two dinucleoside monophosphates: adenylyl(3',5')adenosine (ApA) and uridylyl(3',5')uridine (UpU) promoted by an imidazolate-bridged heterobinuclear copper(II)-zinc(II) complex, Cu(II)-diethylenetriamino-micro-imidazolato-Zn(II)- tris(aminoethyl)amine trisperchlorate (denoted as Cu,Zn-complex in the followings) has been investigated. Kinetic measurements were performed in order to explore the effects of pH, the total concentration of the Cu,Zn-complex and temperature on the cleavage rate. The catalytic activity of the Cu,Zn-complex was quantified by pseudo-first-order rate constants obtained in the excess of the cleaving agent. The results show that the Cu,Zn-complex and its deprotonated forms have phosphoesterase activity and with ApppA the metal complex promoted cleavage takes place selectively within the triphosphate bridge.  相似文献   

6.
It has recently been reported that bilirubin forms a complex with Cu(II). In this paper we show that the formation of the complex results in the reduction of Cu(II) to Cu(I) and the redox cycling of the metal gives rise to the formation of reactive oxygen species, particularly hydroxyl radical. The bilirubin-Cu(II) complex causes strand breakage in calf thymus DNA and supercoiled plasmid DNA. Cu(I) was shown to be an essential intermediate in the DNA cleavage reaction by using the Cu(I) specific sequestering reagent neocuproine. Bilirubin-Cu(II) produced hydroxyl radical and the involvement of active oxygen species was established by the inhibition of DNA breakage by various oxygen radical quenchers.  相似文献   

7.
8.
Three copper(II) complexes of aminoquinoline derivatives, l-glycine-N'-8-quinolylamide (L1), l-alanine-N'-8-quinolylamide (L2), and N-(8-quinolyl) pyridine-2-carboxamide (L3) have been shown to cleave plasmid DNA pBR322 and pUC18 with or without the presence of H(2)O(2)/ascorbate. Crystallographic data reveal that the Cu(II) coordination plane in [Cu(L1)(Ac)(H(2)O)] (1) and [Cu(L2)(Ac)] (2) is nearly co-planar with the quinoline ring. The cleavage activity follows the order of complex 1>complex 2>complex 3, which is in agreement with the reverse order of the steric hindrance of the amino-substituent of the ligands. The presence of the standard radical scavengers does not have a clear effect on the cleavage efficiency of the Cu(II) complexes, suggesting the reactive species leading to DNA damage could be DNA-bound copper-centered radicals rather than the free diffusible ones.  相似文献   

9.
Development of new chemical nucleases is a matter of great interest because of their extensive use in biotechnology and as therapeutic agents. The ATCUN (amino terminal Cu(II) and Ni(II) binding) is a peptide motif that occurs naturally in the serum albumins. The similar peptide motif (GlyAibHis) having unnatural amino acid Aib (alpha-aminoisobutyric acid) was synthesized and its Cu(II) complex was characterized by ESI-MS and spectrophotometry studies. The reactivity of this complex toward DNA cleavage has been investigated. Cu(II)-GlyAibHis shows the DNA cleavage only in presence of mild oxidizing agents like ascorbate by an oxidative mechanism rather than hydrolytic and follows the pseudo first order kinetics (K obs = 0.085 min(-1)). The non-hydrolytic mechanism was further supported by the hydrolysis of pNPP which followed the pseudo first order kinetics (K obs = 1.98 x 10(-2) min(-1)) having no pH effect.  相似文献   

10.
Mixed coordination compounds of Cu(II) with sulfonamides and 1,10-phenanthroline as ligands have been prepared and characterised. Single crystal structural determination of the complex [Cu(N-quinolin-8-yl-p-toluenesulfonamidate)(2)(phen)] shows Cu(II) ions are located in a highly distorted octahedral environment, probably as a consequence of the Jahn-Teller effect. The FT-IR and electronic paramagnetic resonance (EPR) spectra are also discussed. The mixed complexes prepared undergo an extensive DNA cleavage in the presence of ascorbate and hydrogen peroxide. Two of the complexes have higher nucleolytic efficiency than the bis(o-phenanthroline)copper(II) complex.  相似文献   

11.
The interactions of Cu(II)-Arg-Gly-His-Xaa metallopeptides with DNA (where Xaa is L-Leu or L-Glu) were investigated by DNA-fiber EPR spectroscopy, ESI-MS spectrometry, and agarose gel electrophoresis. The average angle between the g// axis of Cu(II)-Arg-Gly-His-Leu and the DNA-fiber axis increased from 45 degrees at room temperature to 90 degrees at -150 degrees C. The Cu(II)-Arg-Gly-His-Glu complex partly dissociated on DNA to several species. The g//value (2.341) of the main species was smaller than that (2.377) observed for free Cu(II) ion bound to DNA. This indicated that the Cu(II) ion was transferred by the peptide to a DNA site where the free Cu(II) ion can hardly reach. ESI-MS spectra of a mixture of the Cu(II) peptide complex and the oligodeoxynucleotide, [d(CGCGTATACGCG)], suggested that the maximum binding stoichiometries of Cu(II) peptide complexes and double stranded oligodeoxynucleotides were 3:1 for Cu(II)-Arg-Gly-His-Leu and 2:1 for Cu(II)-Arg-Gly-His-Glu, respectively. Cu(II)-Arg-Gly-His-Glu completely converted the supercoiled DNA to the nicked-circular form, whereas the cleavage activity was considerably reduced when excess ligand was added. In the presence of excess peptide, nicked DNA formation ratios were 64% for Cu(II)-Arg-Gly-His-Leu and 15% for Cu(II)-Arg-Gly-His-Glu, respectively. The negative charge on Cu(II)-Arg-Gly-His-Glu reduced the affinity of the complex for DNA and enhanced the specificity of the binding.  相似文献   

12.
A protein-cleaving catalyst highly selective for a disease-related protein can be used as a catalytic drug. As the first protein-cleaving catalyst selective for a protein substrate, a catalyst for myoglobin (Mb) was designed by attaching the Cu(II) or Co(III) complex of cyclen to a binding site searched by a combinatorial method using peptide nucleic acid monomers as building units. Various linkers were inserted between the catalytic Co(III) center and the binding site of the Mb-cleaving catalyst. Kinetic data revealed catalytic turnover of the Mb cleavage by the Cu(II) or Co(III) complex. MALDI-TOF MS revealed cleavage of the polypeptide backbone of Mb at selected positions. N-Terminal sequencing of the cleavage products identified the cleavage site and provided evidence for the hydrolytic nature of the Mb cleavage. Various chelating ligands were tested as the ligand for the Co(III) center of the Mb-cleaving catalyst. Among the nine chelating ligands examined, only cyclen and its triaza-monooxo analogue manifested catalytic activity.  相似文献   

13.
14.
Based on our recent studies of RNA cleavage by oligonucleotide–terpyridine·Cu(II) complex 5′- and/or 3′-conjugates, we designed 2′-O-methyloligonucleotides with two terpyridine-attached nucleosides at contiguous internal sites. To connect the 2′-terpyridine-modified uridine residue at the 5′-side to the 5′-O-terpyridyl nucleoside residue at the 3′-side, a dimethoxytrityl derivative of 5-hydroxypropyl-5′-O-terpyridyl-2′-deoxyuridine-3′-phosphoramidite was newly synthesized. Using this unit, we constructed two terpyridine conjugates, with either an unusual phophodiester bond or the bond extended by a propanediol(s)-containing linker. Cleavage reactions of the target RNA oligomer, under the conditions of conjugate excess in the presence of Cu(II), indicated that the conjugates precisely cleaved the RNA at the predetermined site and that one propanediol-containing linker was the most appropriate for inducing high cleavage activity. Furthermore, a comparison of the activity of the propanediol agent with those of the control conjugates with one complex confirmed that the two complexes are required for efficient RNA cleavage. The reaction of the novel cleaver revealed a bell-shaped pH–rate profile with a maximum at pH ~7.5, which is a result of the cooperative action of the complexes. In addition, we demonstrated that the agent catalytically cleaves an excess of the RNA, with the kinetic parameter kcat/Km = 0.118 nM–1 h–1.  相似文献   

15.
It is demonstrated that the Cu(II), Co(III) and Ni(II) complexes of a siderophore chelating drug desferal cleave DNA, in contrast to the corresponding Fe(II) complex which does not bring about DNA scission. Hydroxy radical scavengers inhibit the cleavage reaction.  相似文献   

16.
Novel homodinuclear Cu(II) (K1), heterodinuclear Cu(II)-Mn(II) (K2) and homotrinuclear Cu(II) (K3) complexes with a novel oxime-type ligand have been prepared and their nucleolytic activities on pCYTEXP were established by neutral agarose gel electrophoresis. The analyses of the cleavage products obtained electrophoretically indicate that although the examined complexes induces very similar conformational changes on supercoiled DNA by converting supercoiled form to nicked form than linear form in a sequential manner as the complex concentration or reaction period is increased, K3 is less effective than the two others. The oxime complexes were nucleolytically active at physiological pH values but the activities of K1 or K2 were diminished by increasing the pH of the reaction mixture. In contrast, K3 makes dominantly single strand nicking by producing nicked circles on DNA at almost all the applied pH values. Metal complex induced DNA cleavage was also tested for inhibition by various radical scavengers as superoxide dismutase (SOD), azide, thiourea and potassium iodide. The antioxidants inhibited the nucleolytic acitivities of the oxime complexes but SOD afforded no protection indicating that the nucleolytic mechanism involves of copper and/or manganese complex-mediated reactive oxygen species such as hydroxyl radicals being responsible for the oxidative DNA cleavage.  相似文献   

17.
The known action of Cu, Zn superoxide dismutase (Cu(2)Zn(2)SOD) that converts O(2)(-) to O(2) and H(2)O(2) plays a crucial role in protecting cells from toxicity of oxidative stress. However, the overproduction of Cu(2)Zn(2)SOD does not result in increased protection but rather creates a variety of unfavorable effects, suggesting that too much Cu(2)Zn(2)SOD may be injurious to the cells. The present study examined the DNA cleavage activity mediated by a Cu(n)SOD that contains 1-4 copper ions, in order to obtain an insight into the aberrant copper-mediated oxidative chemistry in the enzyme. A high SOD activity was observed upon metallation of the apo-form of Cu(2)Zn(2)SOD with Cu(II), indicating that nearly all of the Cu(II) in the Cu(n)SOD is as active as the Cu(II) in the copper site of fully active Cu(2)Zn(2)SOD. Using a supercoiled DNA as substrate, significant DNA cleavage was observed with the Cu(n)SOD in the presence of hydrogen peroxide or mercaptoethanol, whereas DNA cleavage with free Cu(II) ions can occur only <5% under the same conditions. Comparison with other proteins shows that the DNA cleavage activity is specific to some proteins including the Cu(n)SOD. The steady state study suggests that a cooperative action between the SOD protein and the Cu(II)may appear in the DNA cleavage activity, which is independent of the number of Cu(II) in the Cu(n)SOD. The kinetic study shows that a two-stage reaction was involved in DNA cleavage. The effects of various factors including EDTA, radical scavengers, bicarbonate anion, and carbon dioxide gas molecules on the Cu(n)SOD-mediated DNA cleavage activity were also investigated. It is proposed that DNA cleavage occurs via both hydroxyl radical oxidation and hydroxide ion hydrolysis pathways. This work implies that any form of the copper-containing SOD enzymes (including Cu(2)Zn(2)SOD and its mutants) might have the DNA cleavage activity.  相似文献   

18.
The coordination geometry around copper(II) in [Cu(imda)(phen)(H2O)] (1) (H2imda = iminodiacetic acid, phen = 1,10-phenanthroline) is described as distorted octahedral while those in [Cu(imda)(5,6-dmp)] (2) (5,6-dmp = 5,6-dimethyl-1,10-phenanthroline) and [Cu(imda)(dpq)] (3) (dpq = dipyrido-[3,2-d:2',3'-f]-quinoxaline) as trigonal bipyramidal distorted square-based pyramidal with the imda anion facially coordinated to copper(II). Absorption spectral (Kb: 1, 0.60+/-0.04x10(3); 2, 3.9+/-0.3x10(3); 3, 1.7+/-0.5x10(4) M(-1)) and thermal denaturation studies (deltaTm: 1, 5.70+/-0.05; 2, 5.5+/-10; 3, 10.6+/-10 degrees C) and viscosity measurements indicate that 3 interacts with calf thymus DNA more strongly than 1 and 2. The relative viscosities of DNA bound to 1 and 3 increase while that of DNA bound to 2 decreases indicating formation of kinks or bends and/or conversion of B to A conformation as revealed by the decrease in intensity of the helicity band in the circular dichroism spectrum of DNA. While 1 and 3 are bound to DNA through partial intercalation, respectively, of phen ring and the extended planar ring of dpq with DNA base stack, the complex 2 is involved in groove binding. All the complexes show cleavage of pBR322 supercoiled DNA in the presence of ascorbic acid with the cleavage efficiency varying in the order 3 > 1 > 2. The highest oxidative DNA cleavage of dpq complex is ascribed to its highest Cu(II)/Cu(I) redox potential. Oxidative cleavage studies using distamycin reveal minor groove binding for the dpq complex but a major groove binding for the phen and 5,6-dmp complexes. Also, all the complexes show hydrolytic DNA cleavage activity in the absence of light or a reducing agent with cleavage efficiency varying in the order 1 > 3 > 2.  相似文献   

19.
20.
The syntheses and RNA cleavage efficiencies of a new series of oligonucleotide conjugates of Cu(II)-serinol-terpyridine and 1,3-propanediol are reported. These reagents, termed ribozyme mimics, were designed such that they would yield multiple unpaired RNA residues directly opposite the site of the RNA cleavage catalyst upon ribozyme mimic-RNA duplex formation. This design effect was implemented using the 1,3-propanediol linker 3, which mimics the three-carbon spacing between the 5'- and 3'-hydroxyls of a natural nucleotide. Incorporation of one or more of these 1,3-propanediol linkers at positions directly adjacent to the serinol-terpyridine modification in the ribozyme mimic DNA strand resulted in cleavage at multiple phosphates in a complementary 31-mer RNA target sequence. The linkers effectively created artificial mismatches in the RNA-DNA duplexes, rendering the opposing RNA residues much more susceptible to cleavage via the transesterification/hydrolysis pathway. The RNA cleavage products produced by the various mimics correlated directly with the number and locations of the linkers in their DNA strands, and the most active ribozyme mimic in the series exhibited multiple turnover in the presence of excess 31-mer RNA target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号