首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A simple new assay for glycerylphosphorylcholine phosphodiesterase is described, in which radioactive glycerylphosphorylcholine is used as substrate and the reaction products are separated by adsorption on an anion-exchange resin. 2. Rat liver subcellular fractions contained both particulate (58%) and soluble (42%) glycerylphosphorylcholine phosphodiesterase. Both activities released free choline from glycerylphosphorylcholine. 3. The particulate glycerylphosphorylcholine phosphodiesterase was recovered mainly in the nuclear and microsomal fractions and showed a distribution similar to those of 5'-nucleotidase and alkaline phosphodiesterase I, both of which are constituents of the liver plasma membrane. 4. During purification of plasma membranes glycerylphosphorylcholine phosphodiesterase, 5'-nucleotidase and alkaline phosphodiesterase I showed largely similar behaviour, indicating that glycerylphosphorylcholine phosphodiesterase is also localized in liver plasma membranes. Slight differences in the distributions of these three enzymes in density-gradient separations are discussed in relation to the possibility that they are unevenly distributed on different areas of the cell surface. 5. The differences between glycerylphosphorylcholine phosphodiesterase and alkaline phosphodiesterase I indicate that these two activities are not functions of a single enzyme. 6. The glycerylphosphorylcholine phosphodiesterase of liver plasma membranes has a pH optimum of 8.5 and a K(m) for glycerylphosphorylcholine of 0.95mm. It is inhibited by EDTA and fully reactivated by a variety of bivalent cations (and Fe(3+)).  相似文献   

2.
Different inhibitors of the Ca(2+)/calmodulin-stimulated phosphodiesterase 1 family have been described and used for the examination of phosphodiesterase 1 in cellular, organ or animal models. However, the inhibitors described differ in potency and selectivity for the different phosphodiesterase family enzymes, and in part exhibit additional pharmacodynamic actions. In this study, we demonstrate that phosphodiesterase 1C is expressed in the human glioblastoma cell line A172 with regard to mRNA, protein and activity level, and that lower activities of phosphodiesterase 2, phosphodiesterase 3, phosphodiesterase 4 and phosphodiesterase 5 are also present. The identity of the phosphodiesterase 1C activity detected was verified by downregulation of the mRNA and protein through human phosphodiesterase 1C specific small interfering RNA. In addition, the measured K(m) values (cAMP, 1.7 microm; cGMP, 1.3 microm) are characteristic of phosphodiesterase 1C. We demonstrate that treatment with the Ca(2+) ionophore ionomycin increases intracellular Ca(2+) in a concentration-dependent way without affecting cell viability. Under conditions of enhanced intracellular Ca(2+) concentration, a rapid increase in cAMP levels caused by the adenylyl cyclase activator forskolin was abolished, indicating the involvement of Ca(2+)-activated phosphodiesterase 1C. The reduction of forskolin-stimulated cAMP levels was reversed by phosphodiesterase 1 inhibitors in a concentration-dependent way. Using this cellular system, we compared the cellular potency of published phosphodiesterase 1 inhibitors, including 8-methoxymethyl-3-isobutyl-1-methylxanthine, vinpocetine, SCH51866, and two established phosphodiesterase 1 inhibitors developed by Schering-Plough (named compounds 31 and 30). We demonstrate that up to 10 microm 8-methoxymethyl-3-isobutyl-1-methylxanthine and vinpocetine had no effect on the reduction of forskolin-stimulated cAMP levels by ionomycin, whereas the more selective and up to 10 000 times more potent phosphodiesterase 1 inhibitors SCH51866, compound 31 and compound 30 inhibited the ionomycin-induced decline of forskolin-induced cAMP at nanomolar concentrations. Thus, our data indicate that SCH51866 and compounds 31 and 30 are effective phosphodiesterase 1 inhibitors in a cellular context, in contrast to the weakly selective and low-potency phosphodiesterase inhibitors 8-methoxymethyl-3-isobutyl-1-methylxanthine and vinpocetine. A172 cells therefore represent a suitable system in which to study the cellular effect of phosphodiesterase 1 inhibitors. 8-Methoxymethyl-3-isobutyl-1-methylxanthine and vinpocetine seem not to be suitable for the study of phosphodiesterase 1-mediated functions.  相似文献   

3.
Frog (Rana catesbiana) rod outer segment disc membranes contain a cyclic nucleotide phosphodiesterase (EC 3.1.4.17) which is activated by light in the presence of ATP. This enzyme is firmly bound to the disc membrane, but can be eluted from the membrane with 10 mM Tris-HCl buffer, pH 7.4 and 2 mM EDTA. The eluted phosphodiesterase has reduced activity, but can be activated approximately 10-fold by polycations such as protamine and polylysine. The eluted phosphodiesterase can no longer be activated by light in the presence of ATP, that is, activation by light apparently depends on the native orientation of phosphodiesterase in relationship to other disc membrane components. The eluted phosphodiesterase was purified to homogeneity as judged by analytical polyacrylamide gel electrophoresis and polyacrylamide gel isoelectric focusing. The over-all purification from intact retina was approximately 925-fold. The purification of phosphodiesterase from the isolated rod outer segment preparation was about 185-fold with a 28% yield. Phosphodiesterase accounts for approximately 0.5% of the disc membrane protein. The eluted phosphodiesterase (inactive form) has a sedimentation coefficient of 12.4 S corresponding to an approximate molecular weight of 240,000. Sodium dodecyl sulfate polyacrylamide gel electrophoresis separates the purified phosphodiesterase into two subunits of 120,000 and 110,000 daltons. With cyclic 3':5'-GMP (cGMP) as substrate the Km for the purified phosphodiesterase is 70 muM. Protamine increases the Vmax without changing the Km for cGMP. The isoelectric point (pI) of the native dimer is 5.7. Limited exposure of the eluted phosphodiesterase (inactive form) to trypsin produces a somewhat greater activation than is obtained with 0.5 mg/ml of protamine. The trypsin-activated phosphodiesterase has a sedimentation coefficient of 7.8 S corresponding to an approximate molecular weight of 170,000. The 110,000-dalton subunit is much less sensitive to trypsin hydrolysis and the 120,000-dalton subunit is rapidly replaced by smaller fragments. On the basis of the molecular weight of the purified phosphodiesterase (240,000) and the concentrations of phosphodiesterase and rhodopsin in the rod outer segment, it is estimated that the molar ratio ophosphodiesterase to rhodopsin in the rod outer segment is approximately 1:900. Since all of the disc phosphodiesterase molecules are activated when 0.1% of the rhodopsins are bleached, we conclude that in the presence of ATP 1 molecule of bleached rhodopsin can activate 1 molecule of phosphodiesterase.  相似文献   

4.
Incubation of homogenates of rat renal cortex at 4 degrees resulted in increased cAMP phosphodiesterase activity; the increase was much more rapid in hypotonic medium than in one of physiological tonicity. cAMP phosphodiesterase activity did not increase with incubation of supernatant fractions (48,000 x g, 20 min) prepared from isotonic homogenates. Extraction of the isotonic particulate fraction with hypotonic buffer released an activator which increased cAMP phosphodiesterase activity of the supernatant fraction. The kidney phosphodiesterase activator differed from a heat-stable, calcium-dependent protein activator of phosphodiesterase in that it was destroyed by heating (90 degrees for 10 min) and was not inhibited by EGTA. The phosphodiesterases of rat renal cortex were partially resolved by chromatography on DEAE-Bio-Gel, and a cAMP phosphodiesterase that is sensitive to the kidney activator was identified. This phosphodiesterase was separable from that affected by a calcium-dependent phosphodiesterase activator from bovine brain and from cGMP-stimulated cAMP phosphodiesterase. As determined by sucrose density gradient centrifugation, after incubation with the kidney activator, the activated form of phosphodiesterase had a lower sedimentation velocity than did the unactivated form.  相似文献   

5.
The spleen cells of a Balb/c mouse immunized with purified bovine calmodulin-dependent cyclic nucleotide phosphodiesterase were fused with nonsecreting mouse myeloma cells (P3-X63-Ag8-653). Antibody producing hybridomas were screened by the enzyme-linked immunosorbent assay using purified phosphodiesterase as the antigen. One monoclonal cell line, CR-B1, was found to produce antibodies which showed positive enzyme-linked immunosorbent assay reactions with bovine brain calcineurin and rabbit muscle phosphorylase kinase in addition to phosphodiesterase. The antibody was purified and characterized. It was shown to immunoprecipitate the calmodulin (CaM)-dependent phosphodiesterase and phosphorylase kinase activities but not those of CaM itself, CaM-independent phosphodiesterase and the catalytic unit of cAMP-dependent protein kinase. The immunoprecipitation of phosphodiesterase could be inhibited by calcineurin and phosphorylase kinase. These results suggest that the antibody interacts at a common site on these calmodulin-dependent proteins. The antigenic determinant in phosphodiesterase does not appear to reside in the calmodulin-binding domain of the enzyme since the antibody and phosphodiesterase interaction is not inhibited by calmodulin, and the calmodulin activation of phosphodiesterase is not affected by CR-B1 antibody. It is therefore suggested that the structural similarity among the three calmodulin-dependent proteins extends beyond the calmodulin-binding domains.  相似文献   

6.
Subunit stoichiometry of retinal rod cGMP phosphodiesterase   总被引:6,自引:0,他引:6  
The cyclic GMP phosphodiesterase of the retinal rod is composed of three distinct types of polypeptides: alpha (90 kDa), beta (86 kDa), and gamma (10 kDa). The gamma subunit has been shown to inhibit phosphodiesterase activity associated with alpha and beta. To investigate the subunit stoichiometry of the retinal phosphodiesterase, we have developed a panel of monoclonal and peptide antibodies that recognize individual phosphodiesterase subunits. By quantitative and immunochemical analysis of the purified subunits, we have shown that each phosphodiesterase molecule contains one copy each of alpha and beta subunit and two copies of gamma subunit. Moreover, gamma can be chemically cross-linked to both alpha and beta, but not to itself, suggesting that alpha and beta may each bind one gamma. The phosphodiesterase is fully activated when both copies of gamma were removed by proteolysis with trypsin. Upon recombination of the purified gamma subunit with the trypsin-activated phosphodiesterase containing alpha beta, the alpha beta gamma 2 stoichiometry is once again restored, with concomitant total inhibition of activity. Our results suggest that at least two activated transducin molecules are required to fully activate one molecule of phosphodiesterase in retinal rods.  相似文献   

7.
We have previously demonstrated that the catalytic sub-unit of protein kinase A can catalyse a potent activation of partially purified Type V cyclic GMP-specific phosphodiesterase activity (Burns et al., 1992, Biochem. J. 283, 487-491). We now demonstrate that this phosphodiesterase most likely has a sub-unit mass of 90kDa, based upon 32P-cyclic GMP photo-affinity labelling, that activation of the phosphodiesterase does not require the prior binding of cyclic GMP to the phosphodiesterase, and that alkaline phosphatase can reverse the protein kinase A-dependent activation of phosphodiesterase activity. Zaprinast is a mixed inhibitor of non-activated cyclic GMP phosphodiesterase activity. However, inhibition of the protein kinase A-activated phosphodiesterase is competitive. These results suggest that protein kinase A can modulate the inhibitory effects of zaprinast via perturbations of a non-catalytic binding site.  相似文献   

8.
It is established that the functional activity of two phosphodiesterase forms--phosphodiesterase I (Ca2+-calmodulin-sensitive) and phosphodiesterase II (Ca2+-calmodulin-insensitive), isolated from grey matter of the irradiated rat brain varies essentially in comparison with that of the normal rats. In the early period of acute radiation injury both phosphodiesterase I sensitivity to calmodulin and phosphodiesterase II special activity under hydrolysis of 3', 5'-GMP decrease but phosphodiesterase I special activity under hydrolysis of 3', 5'-GMP increases. The investigation of temperature dependence of phosphodiesterase I and phosphodiesterase II activations revealed changes in character of curves, the temperature optimum under irradiation being unchanged and inflections appearing on the Arrhenius curves.  相似文献   

9.
The cyclic nucleotide phosphodiesterase (EC 3.4.16) activities of a rat liver particulate fraction were analyzed after solubilization by detergent or by freeze-thawing. Analysis of the two extracts by DEAE-cellulose chromatography revealed that they contain different complements of phosphodiesterase activities. The detergent-solubilized extract contained a cyclic GMP phosphodiesterase, a low affinity cyclic nucleotide phosphodiesterase whose hydrolysis of cyclic AMP was activated by cyclic GMP and a high affinity cyclic AMP phosphodiesterase. The freeze-thaw extract contained a cyclic GMP phosphodiesterase and two high affinity cyclic AMP phosphodiesterase, but no low affinity cyclic nucleotide phosphodiesterase. The cyclic AMP phosphodiesterase activities from the freeze-thaw extract and from the detergent extract all had negatively cooperative kinetics. One of the cyclic AMP phosphodiesterases from the freeze-thaw extract (form A) was insensitive to inhibition by cyclic GMP; the other freeze-thaw solubilized cyclic AMP phosphodiesterase (form B) and the detergent-solubilized cyclic AMP phosphodiesterase were strongly inhibited by cyclic GMP. The B enzyme appeared to be converted into the A enzyme when the particulate fraction was stored for prolonged periods at -20 degrees C. The B form was purified extensively, using DEAE-cellulose, a guanine-Sepharose column and gel filtration. The enzyme retained its negatively cooperative kinetics and high affinity for both cyclic AMP and cyclic GMP throughout the purification, although catalytic activity was always much greater for cyclic AMP. Rabbit antiserum was raised against the purified B enzyme and tested via a precipitin reaction against other forms of phosphodiesterase. The antiserum cross-reacted with the A enzyme and the detergent-solubilized cyclic AMP phosphodiesterase from rat liver. It did not react with the calmodulin-activated cyclic GMP phosphodiesterase of rat brain, the soluble low affinity cyclic nucleotide phosphodiesterase of rat liver or a commercial phosphodiesterase preparation from bovine heart. These results suggest a possible interrelationship between the high affinity cyclic nucleotide phosphodiesterase of rat liver.  相似文献   

10.
The cyclic nucleotide phosphodiesterase (phosphodiesterase) of Dictyostelium discoideum plays an essential role in development by hydrolyzing the cAMP used as a chemoattractant by aggregating cells. We have studied the biochemistry of the phosphodiesterase and a functionally related protein, the phosphodiesterase inhibitor protein, and have cloned the cognate genes. A 1.8-kb and a 2.2-kb mRNA are transcribed from the single-phosphodiesterase gene. The 2.2-kb mRNA comprises the majority of the phosphodiesterase mRNA found in differentiating cells and is transcribed only during development from a promoter at least 2.5 kb upstream of the translational start site. The 1.8-kb phosphodiesterase mRNA is detected at all stages of growth and development, is present at lower levels than the developmentally induced mRNA, and is transcribed from a site proximal to the protein-coding region. The phosphodiesterase gene contains a minimum of three exons, and a 2.3-kb intron, the longest yet reported for this organism. We have shown that the pdsA gene and four fgd genes affect the accumulation of the phosphodiesterase mRNAs, and we believe that these loci represent a significant portion of the genes regulating expression of the phosphodiesterase. The phosphodiesterase gene was introduced into cells by transformation and used as a tool to explore the effects of cAMP on the terminal stages of development. In cells expressing high levels of phosphodiesterase activity, final morphogenesis cannot be completed, and differentiated spore and stalk cells do not form. We interpret these results to support the hypothesis that cAMP plays an essential role in organizing cell movements in late development as well as in controlling the aggregation of cells in the initial phase of the developmental program.  相似文献   

11.
N Bennett  A Clerc 《Biochemistry》1989,28(18):7418-7424
The mechanism of activation of cGMP phosphodiesterase by the GTP-binding protein in the disc membrane of retinal rods has been investigated by measuring the light-induced phosphodiesterase activity in reconstituted systems where the concentration of either the GTP-binding protein or the phosphodiesterase is varied. The results are consistent with the existence of two activator sites per phosphodiesterase functional unit: binding of one G alpha GTP (alpha subunit of the G-protein with GTP bound) with high affinity (100 +/- 50 nM) partially activates the enzyme (Vmax1 approxmately 0.05 Vmax to 0.10V max to trypsin-activated phosphodiesterase); binding of a second G alpha GTP with lower affinity (600 +/- 100 nM) induces maximal activation (Vmax2 approximately Vmax of trypsin-activated phosphodiesterase). The two different states of activated phosphodiesterase have the same Km for cGMP and the same pH dependence; they differ in their sensitivity to GMP. Micromolar concentration of protamines increases the affinity of the two activator sites and slightly increases Vmax1. When G-protein is activated with GTP-gamma S instead of GTP, the affinities of the two activator sites are not significantly modified, while Vmax1 appears to be increased.  相似文献   

12.
Adenosine 3′,5′-monophosphate (cAMP) is a chemoattractant in Dictyostelium discoideum; it also induces phosphodiesterase activity. Recently it was shown (M. H. Juliani, J. Brusca, and C. Klein, (1981)Develop. Biol.83, 114–121) that N6-(aminohexyl)adenosine 3′,5′-monophosphate (hexyl-cAMP) effectively induced phosphodiesterase activity, while this compound was chemotactically inactive and did not effectively bind to the cell surface receptor for cAMP. It was suggested that hexyl-cAMP and cAMP induce phosphodiesterase activity via a chemoreceptor-independent mechanism. In another recent report (P. J. M. Van Haastert, R. C. Van der Meer, and T. M. Konijn (1981)J. Bacteriol.147, 170–175) investigation of induction of phosphodiesterase by several cAMP derivatives revealed that phosphodiesterase induction and chemotaxis had similar cyclic nucleotide specificity. Based on this result it was suggested that cAMP induces phosphodiesterase activity via activation of the chemotactic receptor. In this report we show that hexyl-cAMP transiently inhibits extracellular and cell surface phosphodiesterase. This transient inhibition of the inactivating enzyme and the permanent release of small amounts of cAMP by the cells leads to a transient increase of extracellular cAMP levels. Hexyl-cAMP does not inhibit beef heart phosphodiesterase, and is not degraded by this enzyme. Addition of hexyl-cAMP to a cell suspension containing beef heart phosphodiesterase does not result in an accumulation of extracellular cAMP, and phosphodiesterase induction is absent. We conclude that hexyl-cAMP inhibits phosphodiesterase activity which leads to the accumulation of cAMP; consequently cAMP binds to the chemotactic cAMP receptor resulting in the induction of phosphodiesterase activity.  相似文献   

13.
Agents such as prostaglandins E1 and I2 which elevate cAMP levels in platelets also increase cAMP phosphodiesterase activity. Since much of the cAMP phosphodiesterase activity in human platelets is due to the cGMP-inhibited isozyme (Macphee, C. H., Harrison, S. A., and Beavo, J. A. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 6600-6663), we examined the regulation of this isozyme by prostaglandins E1 and I2 in intact platelets. Because this isozyme is a minor component of platelet protein, normally requiring several thousand-fold purification to achieve homogeneity, a specific monoclonal antibody (CGI-5) was utilized to identify and isolate the cGMP-inhibited phosphodiesterase activity. Treatment of intact platelets with the prostaglandins promoted an increase in the phosphorylation state of the cGMP-inhibited phosphodiesterase and a corresponding increase in phosphodiesterase activity. The effect on activity and phosphorylation of the cGMP-inhibited phosphodiesterase was observed within 2 min after intact platelets were exposed to the prostaglandins. The half-maximal effective dose for prostaglandin I2 (10 nM) was approximately 10-fold lower than that for prostaglandin E1. The phosphorylated, cGMP-inhibited isozyme migrated as a 110-kDa peptide following sodium dodecyl sulfate gel electrophoresis. Direct in vitro phosphorylation of the platelet cGMP-inhibited phosphodiesterase by the catalytic subunit of cAMP-dependent protein kinase caused a similar increase in phosphodiesterase activity. Treatment with PKI peptide, a specific inhibitor of cAMP-dependent protein kinase, blocked the phosphorylation and the effect on activity. Taken together, the data strongly suggest that the effects of prostaglandins E1 and I2 on platelet phosphodiesterase activity are mediated by a direct cAMP-dependent protein kinase-catalyzed phosphorylation of the cGMP-inhibited phosphodiesterase isozyme.  相似文献   

14.
The specific activity of cylic AMP phosphodiesterase and cyclic GMP phosphodiesterase of leukemic lymphocytes was 5–10-fold greater than that of purified normal lymphocytes or homogenates of spleen, thymus or lymph nodes of normal mice. This rise was demonstrable over a wide range of substrate concentrations. Both normal and leukemic lymphocytes contained a heat-stable, calcium-dependent activator of phosphodiesterase. However, the increased activity of phosphodiesterase in leukemic lymphocytes was not due to this protein activator since (a) phophodiesterase activity from these cells was not stimulated by this activator and (b) phosphodiesterase activity of leukemic lymphocytes was not inhibited by the calcium chelator, ethyleneglycol-bis-(β-aminoethylether)-N′,N′-tetraacetic acid, suggesting that the enzyme was not already maximally activated. A comparison of several other properties of phosphodiesterase from normal and leukemic lymphocytes showed that the enzymes have similar pH optima, similar stabilitis to freezing and thawing and similar sensitivities to inhibition by the phosphodiesterase inhibitors, chlorpromazine, papaverine and isobutylmethylxanthine. However, the subcellular distribution of the phosphodiesterases was different, and the phosphodiesterase of leukemic lymphocytes was significantly more resistant to heat than that of normal lymphocytes.Although no differences were found between the phosphodiesterases of normal and leukemic lymphocytes in their sensitivities to drugs, there were marked differences in drug sensitivity between the phosphodiesterase of lymphocytes and that of other tissue. For example, concentrations of chlorpromazine which inhibited phosphodiesterase of cerebrum by 70% had no effect on phosphodiesterase activity of lymphocytes. On the other hand, the papaverine-induced inhibition of phosphodiesterase was similar in lymphocytes and cerebrum.Since an optimal concentration of cyclic nucleotides is essential to maintain normal cell growth, these results suggest that the abnormal growth characteristics of leukemic lymphocytes may be explained by their high activity of phosphodiesterase. Furthermore, the qualitative and quantitative differences between the phosphodiesterases of leukemic lymphocytes and other tissues raise the possibility of selectively inhibiting the phosphodiesterase of the leukemic lymphocytes, thereby reducing their rate of growth, without affecting other tissues.  相似文献   

15.
The phosphodiesterase activity in the HT4.7 neural cell line was pharmacologically characterized, and phosphodiesterase isozyme 4 (PDE4) was found to be the predominant isozyme. The Km for cAMP was 1-2 microM, indicative of a "low Km" phosphodiesterase, and the activity was inhibited by PDE4-selective inhibitors rolipram and Ro20-1724, but not PDE3- or PDE2-selective inhibitors. Calcium, calmodulin, and cGMP, regulators of PDE1, PDE2, and PDE3, had no effect on cAMP hydrolysis. The protein tyrosine kinase inhibitor, genistein, inhibited HT4.7 cAMP phosphodiesterase activity by 85-95% with an IC50 of 4 microM; whereas daidzein, an inactive structural analog of genistein, had little effect on phosphodiesterase activity. This is a common pharmacological criterion used to implicate the regulation by a tyrosine kinase. However, genistein still inhibited phosphodiesterase activity with a mixed pattern of inhibition even when ion-exchange chromatography was used to partially purify phosphodiesterase away from the tyrosine kinase activity. Moreover, tyrphostin 51, another tyrosine kinase inhibitor, was found to also inhibit partially purified phosphodiesterase activity noncompetitively. These data suggest that HT4.7 phosphodiesterase activity is dominated by PDE4 and can be regulated by genistein and tyrphostin 51 by a tyrosine kinase-independent mechanism.  相似文献   

16.
J J Keirns  N Miki  M W Bitensky  M Keirns 《Biochemistry》1975,14(12):2760-2766
Frog (Rana pipiens) rod outer segment disc membranes contain guanosine 3',5'-cyclic monophosphate phosphodiesterase (EC 3.1.4.1.c) which, in the presence of ATP, is stimulated 5- to 20-fold by illumination. The effectiveness of monochromatic light of different wavelengths in activating phosphodiesterase was examined. The action spectrum has a maximum of 500 nm, and the entire spectrum from 350 to 800 nm closely matches the absorption spectrum of rhodopsin, which is apparently the pigment which mediates the effects of light on phosphodiesterase activity. trans-Retinal alone does not mimic light. Half-maximal activation of the phosphodiesterase occurs with a light exposure which bleaches 1/2000 of the rhodopsins. Half-maximal activation can also be achieved by mixing 1 part of illuminated disc membranes in which the rhodopsin is bleached with 99 parts of unilluminated membranes. Regeneration of bleached rhodopsin by addition of 11-cis-retinal is illuminated disc membranes reverses the ability of these membranes to activate phosphodiesterase in unilluminated membranes. If the rhodopsin regenerated by 11-cis-retinal is illuminated again, it regains the ability to activate phosphodiesterase. These studies show that the levels of cyclic nucleotides in vetebrate rod outer segments are regulated by minute amounts of light and clearly indicate that rhodopsin is the photopigment whose state of illumination is closely linked to the enzymatic activity of disc membrane phosphodiesterase.  相似文献   

17.
Two classes of high affinity, cGMP-specific binding sites have been found in association with a peripheral membrane protein in rod outer segments. [3H]cGMP and a photoaffinity label, 8-N3-[32P]cIMP, have been used to study these cGMP binding sites. The cGMP binding sites co-migrated with rod outer segment phosphodiesterase (EC 3.1.4.17) upon Bio-Gel A-0.5m column chromatography, sucrose density gradient centrifugation, and isoelectric focusing (pI 5.35). Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the 8-N3-[32P]cIMP-labeled protein also migrated in a position identical with that of purified phosphodiesterase. Scatchard analysis, using purified phosphodiesterase, revealed the presence of two classes of cGMP binding sites with apparent KD values of 0.16 and 0.83 microM. A number of observations indicated that these high affinity, cGMP-specific binding sites are distinct from the phosphodiesterase catalytic site. cAMP, which is a substrate for phosphodiesterase, did not bind to the high affinity cGMP specific sites. Limited tryptic proteolysis of phosphodiesterase resulted in a striking activation of the catalytic activity and a 96% loss of cGMP binding. 1-Methyl-3-isobutylxanthine inhibited phosphodiesterase activity and enhanced the specific binding of cGMP. Mg2+ was necessary for phosphodiesterase activity, but not for high affinity cGMP binding. Finally, phosphodiesterase activity and the cGMP-specific high affinity sites showed different stabilities on storage in phosphate buffer. These specific high affinity cGMP binding sites may be involved in the regulation of phosphodiesterase activity.  相似文献   

18.
The effect of the endogenous protein activator on the kinetic characteristics of a highly purified, activator-deficient rat brain phosphodiesterase (EC 3.1.4.-) of a highly purified, activator-deficient rat brain phosphodiesterase (EC 3.1.4-) was studied. This enzyme preparation has only a high Km for cyclic AMP and a low Km for cyclic GMP. In the presence of 20 muM Ca2+, saturating concentrations of the activator decreased the Km of this enzyme for cyclic AMP from 350 muM to about 80 muM, without changing the V. The phosphodiesterase activator did not change the Km of phosphodiesterase for cyclic GMP; however, amoderate increase of V was seen. The activator lacks species specificity; the activator isolated from the bullfrog sympathetic chain produced the same qualitative and comparable quantitative changes in the kinetic properties of the purified rat brain phosphodiesterase. Cyclic GMP is a potent competitive inhibitor of the phosphodiesterase activation by the activator (Ki=1.8 muM), using cyclic AMP as a substrate. Cyclic AMP inhibits slightly the hydrolysis of cyclic GMP by phosphodiesterase in the presence of activator (Ki=155 muM) only.  相似文献   

19.
R K Sharma 《Biochemistry》1991,30(24):5963-5968
Calmodulin-dependent phosphodiesterase was purified to apparent homogeneity from the total calmodulin-binding fraction of bovine heart in a single step by immunoaffinity chromatography. The isolated enzyme had significantly higher affinity for calmodulin than the bovine brain 60-kDa phosphodiesterase isozyme. The cAMP-dependent protein kinase was found to catalyze the phosphorylation of the purified cardiac calmodulin-dependent phosphodiesterase with the incorporation of 1 mol of phosphate/mol of subunit. The phosphodiesterase phosphorylation rate was increased severalfold by histidine without affecting phosphate incorporation into the enzyme. Phosphorylation of phosphodiesterase lowered its affinity for calmodulin and Ca2+. At constant saturating concentrations of calmodulin (650 nM), the phosphorylated calmodulin-dependent phosphodiesterase required a higher concentration of Ca2+ (20 microM) than the nonphosphorylated phosphodiesterase (0.8 microM) for 50% activity. Phosphorylation could be reversed by the calmodulin-dependent phosphatase (calcineurin), and dephosphorylation was accompanied by an increase in the affinity of phosphodiesterase for calmodulin.  相似文献   

20.
Okadaic acid, a potent inhibitor of Type 1 and Type 2A protein phosphatases, was used to investigate the mechanism of insulin action on membrane-bound low Km cAMP phosphodiesterase in rat adipocytes. Upon incubation of cells with 1 microM okadaic acid for 20 min, phosphodiesterase was stimulated 3.7- to 3.9-fold. This stimulation was larger than that elicited by insulin (2.5- to 3.0-fold). Although okadaic acid enhanced the effect of insulin, the maximum effects of the two agents were not additive. When cells were pretreated with 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), the level of phosphodiesterase stimulation by okadaic acid was rendered smaller, similar to that attained by insulin. In cells that had been treated with 2 mM KCN, okadaic acid (like insulin) failed to stimulate phosphodiesterase, suggesting that ATP was essential. Also, as reported previously, the effect of insulin on phosphodiesterase was reversed upon exposure of hormone-treated cells to KCN. This deactivation of previously-stimulated phosphodiesterase was blocked by okadaic acid, but not by insulin. The above KCN experiments were carried out with cells in which A-kinase activity was minimized by pretreatment with H-7. Okadaic acid mildly stimulated basal glucose transport and, at the same time, strongly inhibited the action of insulin thereon. It is suggested that insulin may stimulate phosphodiesterase by promoting its phosphorylation and that the hormonal effect may be reversed by a protein phosphatase which is sensitive to okadaic acid. The hypothetical protein kinase thought to be involved in the insulin-dependent stimulation of phosphodiesterase appears to be more H-7-resistant than A-kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号