首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Artificial ribozymes and deoxyribozymes.   总被引:9,自引:0,他引:9  
RNA and DNA molecules with catalytic properties have been isolated by in vitro selection from combinatorial nucleic acid libraries. A broad range of chemical reactions is catalyzed and nucleic acids can accelerate bond formation between small organic substrates. The catalytic performance of nucleic acids can be enhanced by the incorporation of additional functional groups.  相似文献   

2.
Molecular evolution allows chemists and biologists to generate nucleic acids with tailor-made binding or catalytic activities. Recent examples of nucleic acid evolution in vitro provide insights into natural ribozyme evolution and also demonstrate potential applications of evolved DNA and RNA molecules. Efforts to expand the scope of nucleic acid evolution are also underway, including the development of novel methods for exploring nucleic acid sequence-space and the incorporation of non-natural chemical functionality into nucleic acid libraries.  相似文献   

3.
4.
Here we report efficient and selective postsynthesis labeling strategies, based on an advanced phosphoramidation reaction, for nucleic acids of either synthetic or enzyme-catalyzed origin. The reactions provided phosphorimidazolide intermediates of DNA or RNA which, whether reacted in one pot (one-step) or purified (two-step), were directly or indirectly phosphoramidated with label molecules. The acquired fluorophore-labeled nucleic acids, prepared from the phosphoramidation reactions, demonstrated labeling efficacy by their F/N ratio values (number of fluorophores per molecule of nucleic acid) of 0.02–1.2 which are comparable or better than conventional postsynthesis fluorescent labeling methods for DNA and RNA. Yet, PCR and UV melting studies of the one-step phosphoramidation-prepared FITC-labeled DNA indicated that the reaction might facilitate nonspecific hybridization in nucleic acids. Intrinsic hybridization specificity of nucleic acids was, however, conserved in the two-step phosphoramidation reaction. The reaction of site-specific labeling nucleic acids at the 5′-end was supported by fluorescence quenching and UV melting studies of fluorophore-labeled DNA. The two-step phosphoramidation-based, effective, and site-specific labeling method has the potential to expedite critical research including visualization, quantification, structural determination, localization, and distribution of nucleic acids in vivo and in vitro.  相似文献   

5.
A number of novel gene detection techniques all revolve around the ligation of synthetic nucleic acid probes. In such ligase-assisted gene detection reactions, specific DNA or RNA sequences are investigated by using them as guides for the covalent joining of pairs of probe molecules. The probes are designed to hybridize immediately next to each other on the target nucleic acid strand. Demonstration of ligated probes results in highly specific detection of and efficient distinction between similar sequence variants under standard reaction conditions. Accordingly, the principle has been applied in automated genetic screening procedures. Ligation reactions are also integral to a number of amplification procedures and they will be of value in an expanding range of genetic analyses.  相似文献   

6.
Locked nucleic acid (LNA) is a class of nucleic acid analogs possessing very high affinity and excellent specificity toward complementary DNA and RNA, and LNA oligonucleotides have been applied as antisense molecules both in vitro and in vivo. In this review, we briefly describe the basic physiochemical properties of LNA and some of the difficulties that may be encountered when applying LNA technology. The central part of the review focuses on the use of LNA molecules in regulation of gene expression, including delivery to cells, stability, unspecific effects, toxicity, pharmacokinetics, and design of LNA oligonucleotides. The last part evaluates LNA as a diagnostic tool in genotyping.  相似文献   

7.
DNA binding properties of a 110 kDa nucleolar protein.   总被引:8,自引:2,他引:6       下载免费PDF全文
M Sapp  R Knippers    A Richter 《Nucleic acids research》1986,14(17):6803-6820
A single strand specific DNA binding protein was purified to homogeneity from calf thymus nucleoprotein. The monomeric protein is elongated in shape and has a molecular mass of 110 kDa. Since immunocytochemistry revealed that the protein is predominantly located in the nucleolus we refer to it as the 110 kDa nucleolar protein. The protein binds not only to single stranded DNA but also to single stranded RNA, including homopolymeric synthetic RNA. We have used the single stranded DNA binding properties of the 110 kDa protein in model studies to investigate its effects on the configuration of nucleic acid. Our results are: only 50-55 protein molecules are sufficient to saturate all binding sites on the 6408 nucleotides of phage fd DNA; protein binding cause a compaction of single stranded DNA; large nucleoprotein aggregates are formed in the presence of divalent cations; this is due to protein-protein interactions which occur at moderately high concentrations of magnesium-, calcium or manganese ions; the protein induces the reassociation of complementary nucleic acid sequences. We speculate that the 110 kDa protein performs similar reactions in vivo and may have a function related to the processing and packaging of preribosomal RNA.  相似文献   

8.
The patterns of nucleic acid synthesis in insect cells infected with iridescent virus types 2 and 6 has been examined using nucleic acid hybridization techniques. Virus-specific RNA synthesis was detected 24 hr after infection. Virus-specific DNA synthesis was detected 96 hr after infection. Host-specific nucleic acid synthesis declined throughout infection, and host-specific nucleic acid synthesis was detected only in the first 48 hr of infection. The synthesis of iridescent virus progeny DNA molecules precedes the appearance of mature iridescent virus particles.  相似文献   

9.
Shajani Z  Varani G 《Biopolymers》2007,86(5-6):348-359
RNA and DNA molecules experience motions on a wide range of time scales, ranging from rapid localized motions to much slower collective motions of entire helical domains. The many functions of RNA in biology very often require this molecule to change its conformation in response to biological signals in the form of small molecules, proteins or other nucleic acids, whereas local motions in DNA may facilitate protein recognition and allow enzymes acting on DNA to access functional groups on the bases that would otherwise be buried in Watson-Crick base pairs. Although these statements make a compelling case to study the sequence dependent dynamics in nucleic acids, there are few residue-specific studies of nucleic acid dynamics. Fortunately, NMR studies of dynamics of nucleic acids and nucleic acids-protein complexes are gaining increased attention. The aim of this review is to provide an update of the recent progress in studies of nucleic acid dynamics by NMR based on the application of solution relaxation techniques.  相似文献   

10.
A J?schke 《Biological chemistry》2001,382(9):1321-1325
RNA molecules with catalytic properties have been isolated by in vitro selection from combinatorial libraries. A broad range of chemical reactions can be catalyzed, and nucleic acids can accelerate bond formation between small organic substrates. The catalytic performance of nucleic acids can be enhanced by incorporation of additional functional groups. This minireview focuses on carbon-carbon bond formation accelerated by in vitro selected ribozymes.  相似文献   

11.
Virus particles banding at 1.34 g/ml in CsCl and sedimenting at 160S in sucrose gradients were isolated from fecal specimens of patients suffering from hepatitis. In the presence of 4 M urea and about 90% formamide, these particles released linear nucleic acid molecules of the kinked appearance characteristic of single-stranded RNA or single-stranded DNA. They could be distinguished from the nucleic acid of phage lambda added to the preparation as a marker for double-stranded configuration. Experiments in which the virus particles under investigation were incubated at pH 12.9 at 50 degrees C for 30 min revealed that their nucleic acid molecules were hydrolyzed as readily as the RNA genome of poliovirus type 2 analyzed in parallel. Both the single-stranded DNA of phage phiX174 and that of parvovirus LuIII, however, proved unaffected by this treatment, and the double-stranded DNA of phage lambda was denatured to single-stranded molecules. It was concluded, therefore, that the virus of human hepatitis A contains a linear genome of single-stranded RNA and has to be classified with the picornaviruses.  相似文献   

12.
The logic of using nucleic acids as pharmaceutical reagents is in part based on their capacity to interact with high affinity and specificity with other biological components. Considerable progress has been made over the past 10 years in the development of nucleic acid-based drug molecules using a variety of different technologies. One approach is a combinatorial technology that involves an iterative Darwinian-type in vitro evolution process, which has been termed SELEX for 'systematic evolution of ligands by exponential enrichment'. The procedure is a highly efficient method of identifying rare ligands from combinatorial nucleic acid libraries of very high complexity. It allows the selection of nucleic acid molecules with desired functions and it has been instrumental in the identification of a number of synthetic DNA and RNA molecules, so-called aptamers that recognise ligands of different chemical origin. The method is fast, it does not require special equipment and the selected aptamers typically bind their target with high affinity and high specificity. Here we summarise the recent examples of the SELEX technique within the context of identifying high-affinity ligands against parasite target molecules.  相似文献   

13.
14.
15.
16.
17.
18.
Spatial and temporal changes in sedimentary nucleic acid concentrations in an abyssal locality of the northeastern Atlantic Ocean were investigated in relation to fluxes of nucleic acids produced in the photic layer. Sediment trap material, collected between 1996 and 1998 at depths of 1,000, 3,000, and 4,700 m, and sediment samples were analyzed for DNA and RNA content. Nucleic acid concentrations in the sediments were very high and displayed significant temporal changes, whereas mesoscale variability was low. DNA and RNA concentrations generally displayed opposite temporal patterns, which are likely to be dependent on the nature and characteristics of DNA and RNA molecules. Nucleic acid fluxes were high and displayed clear seasonal changes apparently coupled with seasonal pulses of primary production. However, while median values of DNA fluxes were relatively similar in all sediment traps, median values of RNA fluxes almost doubled from the 1,000- to the 4,700-m depth, suggesting differences in the metabolic activity of microbes associated with sinking particles. Significant relationships between DNA concentrations in the sediments and DNA fluxes and between RNA concentrations and RNA fluxes, indicating the presence of a clear pelagic-benthic coupling of particulate nucleic acids, were observed. The benthic system investigated was not steady state since we estimated that, from September 1996 to October 1998, nucleic acid concentration in the sediments decreased by about 165 mg of DNA m(-2). Vertical profiles revealed a significant decrease in DNA concentration with depth in the sediments, reaching an asymptotic value of about 5 microg g(-1). This DNA fraction constitutes a pool of potentially refractory DNA (accounting for 16 to 40% of the total DNA pool) that might be buried in the sediments.  相似文献   

19.
Newly transcribed heterogeneous nuclear RNA (hnRNA) in the eucaryote cell nucleus is bound by proteins, giving rise to large ribonucleoprotein (RNP) fibrils with an inherent substructure consisting largely of relatively homogeneous approximately 20-nm 30S particles, which contain core polypeptides of 34,000-38,000 mol wt. To determine whether this group of proteins was sufficient for the assembly of the native beaded nucleoprotein structure, we dissociated 30S hnRNP purified from mouse ascites cells into their component proteins and RNA by treatment with the ionic detergent sodium deoxycholate and then reconstituted this complex by addition of Triton X-100 to sequester the deoxycholate. Dissociation and reassembly were assayed by sucrose gradient centrifugation, monitoring UV absorbance, protein composition, and radiolabeled nucleic acid, and by electron microscopy. Endogenous RNA was digested and reassembly of RNP complexes carried out with equivalent amounts of exogenous RNA or single-stranded DNA. These complexes are composed exclusively of groups of n 30S subunits, as determined by sucrose gradient and electron microscope analysis, where n is the length of the added nucleic acid divided by the length of nucleic acid bound by one native 30S complex (about 1,000 nucleotides). When the nucleic acid: protein stoichiometry in the reconstitution mixture was varied, only complexes composed of 30S subunits were formed; excess protein or nucleic acid remained unbound. These results strongly suggest that core proteins determine the basic structural properties of 30S subunits and hence of hnRNP. In vitro construction of RNP complexes using model nucleic acid molecules should prove useful to the further study of the processing of mRNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号