首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under steady state photophosphorylating conditions, each ATP synthase complex from spinach thylakoids contains, at a catalytic site, about one tightly bound ATP molecule that is rapidly labeled from medium 32Pi. The level of this bound [32P]ATP is markedly reduced upon de-energization of the spinach thylakoids. The reduction is biphasic, a rapid phase in which the [32P] ATP/synthase complex drops about 2-fold within 10 s, followed by a slow phase, kobs = 0.01/min. A decrease in the concentration of medium 32Pi to well below its apparent Km for photophosphorylation is required to decrease the amount of tightly bound ATP/synthase found just after de-energization and before the rapid phase of bound ATP disappearance. The [32P]ATP that remains bound after the rapid phase appears to be mostly at a catalytic site as demonstrated by a continued exchange of the oxygens of the bound ATP with water oxygens. This bound [32P]ATP does not exchange with medium Pi and is not removed by the presence of unlabeled ATP. The levels of tightly bound ADP and ATP arising from medium ADP were measured by a novel method based on use of [beta-32P]ADP. After photophosphorylation and within minutes after the rapid phase of bound ATP loss, the measured ratio of bound ADP to ATP was about 1.4 and the sum of bound ADP plus ATP was about 1/synthase. This ratio is smaller than that found about 1 h after de-energization. Hence, while ATP bound at catalytic sites disappears, bound ADP appears. The results suggest that during and after de-energization the bound ATP disappears from the catalytic site by hydrolysis to bound ADP and Pi with subsequent preferential release of Pi. These and related observations can be accommodated by the binding change mechanism for ATP synthase with participation of alternating catalytic sites and are consistent with a deactivated state arising from occupancy of one catalytic site on the synthase complex by an inhibitory ADP without presence of Pi.  相似文献   

2.
The ATP hydrolysis activity and proton pumping of the ATP synthase of Escherichia coli in isolated native membranes have been measured and compared as a function of ADP and Pi concentration. The ATP hydrolysis activity was inhibited by Pi with an half-maximal effect at 140 microM, which increased progressively up in the millimolar range when the ADP concentration was progressively decreased by increasing amounts of an ADP trap. In addition, the relative extent of this inhibition decreased with decreasing ADP. The half-maximal inhibition by ADP was found in the submicromolar range, and the extent of inhibition was enhanced by the presence of Pi. The parallel measurement of ATP hydrolysis activity and proton pumping indicated that, while the rate of ATP hydrolysis was decreased as a function of either ligand, the rate of proton pumping increased. The latter showed a biphasic response to the concentration of Pi, in which an inhibition followed the initial stimulation. Similarly as previously found for the ATP synthase from Rhodobacter caspulatus [P. Turina, D. Giovannini, F. Gubellini, B.A. Melandri, Physiological ligands ADP and Pi modulate the degree of intrinsic coupling in the ATP synthase of the photosynthetic bacterium Rhodobacter capsulatus, Biochemistry 43 (2004) 11126-11134], these data indicate that the E. coli ATP synthase can operate at different degrees of energetic coupling between hydrolysis and proton transport, which are modulated by ADP and Pi.  相似文献   

3.
After illumination in the presence of dithiothreitol, chloroplast thylakoids catalyze ATP hydrolysis and an exchange between ATP and Pi in the dark. ATP hydrolysis is linked to inward proton translocation. The relationships between ATP hydrolysis, ATP-Pi exchange, and proton translocation during the steady state were examined. The internal proton concentration was found to be proportional to the rate of ATP hydrolysis when these parameters were varied by procedures that do not alter the proton permeability of the thylakoid membranes. A linear relationship between the internal proton concentration and the rate of nonphosphorylating electron flow was previously verified. By determining the constant relating internal proton concentration to both ATP hydrolysis and electron flow, the proton/ATP ratio for the chloroplast ATPase complex was calculated to be 3.4 +/- 0.3. The presence of Pi, which allows ATP-Pi exchange to occur, lowers the internal proton concentration, but does not alter the relationship between the net rate of ATP hydrolysis and internal proton concentration. ATP-Pi exchange shows a dependence on the proton activity gradient very similar to that of ATP synthesis in the light. These results suggest that ATP-Pi exchange resembles photophosphorylation. In agreement with this idea, it is nucleoside diphosphate from the medium that is phosphorylated during exchange. Moreover, the energy-linked incorporation of Pi and ADP into ATP during exchange occurs at a similar rate. Thus, ATP synthesis from medium ADP and Pi takes place at the expense of the pH gradient generated by ATP hydrolysis.  相似文献   

4.
During net nucleoside triphosphate synthesis by chloroplast ATP synthase the extent of water oxygen incorporation into each nucleoside triphosphate released increases with decrease in ADP, GDP or IDP concentration. Likewise, during net ATP hydrolysis by the Mg2+-activated chloroplast ATPase, the extent of water oxygen incorporation into each Pi released increases as the ATP, GTP, or ITP concentration is decreased. However, the concentration ranges in which substrate modulation occurs differs with each nucleotide. Modulation of oxygen exchange during synthesis and hydrolysis of adenine nucleotides, as measured by variation in the extent of water oxygen incorporation into products, occurs below 250 microM. In contrast, guanosine and inosine nucleotides alter the extent of exchange at higher and much wider concentration ranges. Activation of the chloroplast ATPase by either heat or trypsin results in similar catalytic behavior as monitored by ATP modulation of oxygen exchanges during hydrolysis in the presence of Mg2+. More exchange capacity is evident with octylglucoside-activated enzyme at all ATP concentrations. High levels of tentoxin were also found to alter the catalytic exchange parameters resulting in continued water oxygen exchange into Pi released during hydrolysis at high ATP concentrations. Little or no oxygen exchange accompanies ATP hydrolysis in the presence of Ca2+. The [18O]Pi species formed from highly gamma-18O-labeled ATP at lower ATP concentrations gives a distribution as expected if only one catalytic pathway is operative at a given ATP concentration. This and other results support the concept of catalytic cooperativity between alternating sites as explanation for the modulation of oxygen exchange by nucleotide concentration.  相似文献   

5.
Techniques are described for studying the labeling of ADP and ATP bound to the ATP synthase complex of beef heart submitochondrial particles catalyzing oxidative phosphorylation. These suffice for measurements of bound nucleotides during the time required for a single turnover, during steady state net ATP synthesis, or under quasiequilibrium conditions of ATP formation and hydrolysis. Results show that the "tightly bound" ATP associated with isolated submitochondrial particles does not become labeled by medium [32P]Pi rapidly enough to qualify as an intermediate in ATP synthesis. In contrast to chloroplast preparations, little or no bound [32P]Pi committed to ATP formation is present on particles during steady state synthesis. Also, highly active particles synthesizing ATP from [32P]Pi and filtered after EDTA addition have no detectable bound [32P]ATP even though several ATPs have been made per synthase complex. However, under quasiequilibrium conditions membrane-bound ADP and ATP are present whose labeling characteristics qualify them as intermediates in ATP synthesis. In addition, a hexokinase-accessibility approach shows the presence of a steady level of bound ATP. Lack of detection of bound intermediates under other conditions is regarded as reflecting the ready reversibility of oxidative phosphorylation, with consequent facile cleavage of bound ATP and release of bound Pi.  相似文献   

6.
Zharova TV  Vinogradov AD 《Biochemistry》2006,45(48):14552-14558
The presence of medium Pi (half-maximal concentration of 20 microM at pH 8.0) was found to be required for the prevention of the rapid decline in the rate of proton-motive force (pmf)-induced ATP hydrolysis by Fo.F1 ATP synthase in coupled vesicles derived from Paracoccus denitrificans. The initial rate of the reaction was independent of Pi. The apparent affinity of Pi for its "ATPase-protecting" site was strongly decreased with partial uncoupling of the vesicles. Pi did not reactivate ATPase when added after complete time-dependent deactivation during the enzyme turnover. Arsenate and sulfate, which was shown to compete with Pi when Fo.F1 catalyzed oxidative phosphorylation, substituted for Pi as the protectors of ATPase against the turnover-dependent deactivation. Under conditions where the enzyme turnover was not permitted (no ATP was present), Pi was not required for the pmf-induced activation of ATPase, whereas the presence of medium Pi (or sulfate) delayed the spontaneous deactivation of the enzyme which was induced by the membrane de-energization. The data are interpreted to suggest that coupled and uncoupled ATP hydrolysis catalyzed by Fo.F1 ATP synthases proceeds via different intermediates. Pi dissociates after ADP if the coupling membrane is energized (no E.ADP intermediate exists). Pi dissociates before ADP during uncoupled ATP hydrolysis, leaving the E.ADP intermediate which is transformed into the inactive ADP(Mg2+)-inhibited form of the enzyme (latent ATPase).  相似文献   

7.
The forward and reverse rates of the overall reaction catalyzed by the ATP synthase in intact rat heart mitochondria, as measured with 32P, were compared with the rates of two partial steps, as measured with 18O. Such rates have been measured previously, but their relationship to one another has not been determined, nor have the partial reactions been measured in intact mitochondria. The partial steps measured were the rate of medium Pi formation from bound ATP (in state 4 this also equals the rate of medium Pi into bound ATP) and the rate of formation of bound ATP from bound Pi within the catalytic site. The rates of both partial reactions can be measured by 31P NMR analysis of the 18O distribution in Pi and ATP released from the enzyme during incubation of intact mitochondria with highly labeled [18O]Pi. Data were obtained in state 3 and 4 conditions with variation in substrate concentrations, temperature, and mitochondrial membrane electrical potential gradient (delta psi m). Although neither binding nor release of ATP is necessary for phosphate/H2O exchange, in state 4 the rate of incorporation of at least one water oxygen atom into phosphate is approximately twice the rate of the overall reaction rate under a variety of conditions. This can be explained if the release of Pi or ATP at one catalytic site does not occur, unless ATP or Pi is bound at another catalytic site. Such coupling provides strong support for the previously proposed alternating site mechanism. In state 3 slow reversal of ATP synthesis occurs within the mitochondrial matrix and can be detected as incorporation of water oxygen atoms into medium Pi even though medium [32P]ATP does not give rise to 32Pi in state 3. These data can be explained by lack of translocation of ATP from the medium to the mitochondrial matrix. The rate of bound ATP formation from bound Pi at catalytic sites was over twice the rate of the overall reaction in both states 4 and 3. The rate of reaction at the catalytic site is considerably less sensitive to the decrease in membrane potential and the concentration of medium ADP than is the rate of medium ATP formation. This supports the view that the active catalytic site is occluded and proceeds at a rapid rate which is relatively independent of delta psi m and of media substrates.  相似文献   

8.
J M Zhou  Z X Xue  Z Y Du  T Melese  P D Boyer 《Biochemistry》1988,27(14):5129-5135
Whether the tightly bound ADP that can cause a pronounced inhibition of ATP hydrolysis by the chloroplast ATP synthase and F1 ATPase (CF1) is bound at catalytic sites or at noncatalytic regulatory sites or both has been uncertain. We have used photolabeling by 2-azido-ATP and 2-azido-ADP to ascertain the location, with Mg2+ activation, of tightly bound ADP (a) that inhibits the hydrolysis of ATP by chloroplast ATP synthase, (b) that can result in an inhibited form of CF1 that slowly regains activity during ATP hydrolysis, and (c) that arises when low concentrations of ADP markedly inhibit the hydrolysis of GTP by CF1. The data show that in all instances the inhibition is associated with ADP binding without inorganic phosphate (Pi) at catalytic sites. After photophosphorylation of ADP or 2-azido-ADP with [32P]Pi, similar amounts of the corresponding triphosphates are present on washed thylakoid membranes. Trials with appropriately labeled substrates show that a small portion of the tightly bound 2-azido-ATP gives rise to covalent labeling with an ATP moiety at noncatalytic sites but that most of the bound 2-azido-ATP gives rise to covalent labeling by an ADP moiety at a catalytic site. We also report the occurrence of a 1-2-min delay in the onset of the Mg2+-induced inhibition after addition of CF1 to solutions containing Mg2+ and ATP, and that this delay is not associated with the filling of noncatalytic sites. A rapid burst of Pi formation is followed by a much lower, constant steady-state rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The inhibition by light of chloroplast coupling factor ATPase is not due simply to competing photophosphorylation. This inhibition is only partially relieved by either an arsenate-pool trap for released phosphate, or a pyruvate kinase/phosphoenolpyruvate trap for ADP. Moreover, the amount of product return that does occur in the absence of trapping systems, ascertained by incorporation of 32Pi or [2-3H]ADP back into ATP during the hydrolysis reaction, is insufficient to account for the observed activity decrease. In intermediate pi:H2O oxygen exchange studies, the number of water oxygens incorporated into each molecule of Pi produced does not vary with light intensity during the ATPase assay. This indicates that the light-induced change in ATPase activity is not due to an alteration of rat constants involved in the forward and reverse partitioning of the E.ADP.Pi complex. In contrast, ammonium chloride, an uncoupler of photophosphorylation which stimulates membrane-bound coupling factor ATPase when added after light activation, causes a shift in the pattern of intermediate Pi:H2O oxygen exchange toward a lower number of water oxygens incorporated per Pi formed. The effect of NH4+ consistent with ATPase activity stimulation caused by enhanced partitioning forward of the E.products complex. These observations suggest the operation of two mechanisms of regulation of ATP ase activity during chloroplast de-energization. However, a direct effect of NH4+ on the coupling factor itself, independent of the membrane energization effect, cannot be ruled out by the present studies. Additional oxygen exchange experiments lead to the conclusion that the binding of ATP at a site catalyzing extensive ATP:H2O back exchange in the native chloroplast system ( Wimmer, M. J., and Rose, I. A. (1977) J. Biol. Chem. 252, 6769-6775) is different from the binding of ATP for net hydrolysis in the system activated for ATPase.  相似文献   

10.
The kinetics of 32Pi incorporation into adenine nucleotides by subchloroplast particles in the light is studied with a continuous flow apparatus allowing measurements between 3 and 200 ms. After a short lag time from 1 to 3 ms ATP synthesis proceeds with a constant rate. During the first few milliseconds a faster labelling of ADP is detected. This labelling of ADP reaches a constant level up to 1 molecule ADP labelled per molecule of coupling factor present. The labelling pattern in ATP indicates that the labelled ADP does not equilibrate with free ADP. The addition of 32Pi to a phosphorylating system during the light phase (32Pi pulse) exhibits unchanged kinetic characteristics for labelling of ATP and ADP. These results indicate a phosphorylation of AMP to ADP being an intermediate step in photophosphorylation. In experiments carried out in the dark no label is found in ATP within the time analysed. However the labelling of ADP occurs in the same way as in the light.  相似文献   

11.
5-Oxo-L-prolinase catalyzes the virtually complete hydrolysis of 5-oxo-L-proline (L-pyroglutamate) to L-glutamate. The thermodynamic driving force for this endergonic amide hydrolysis is supplied by the coupled stoichiometric hydrolysis of ATP to ADP and Pi. We report here that the efficiency of the coupling between nucleotide and amide hydrolysis is dependent on the nucleotide base. Thus, with both ATP and dATP there is one to one stoichiometry between nucleotide cleavage and 5-oxoproline hydrolysis. With ITP, GTP, or UTP, however, the hydrolysis of NTP exceeds amide hydrolysis by 6 to 50-fold. In the absence of 5- oxoproline, the enzyme catalyzes a slow ATPase reaction, but it catalyzes very rapid ITPase, GTPase and UTPase reactions. These NTPase reactions, which under some conditions are faster than the ATP-mediated overall coupled reaction, are inhibited by 5-oxoproline and by analogs of 5-oxoproline that bind to the enzyme.  相似文献   

12.
Kinetic control of mitochondrial ATP synthesis   总被引:2,自引:0,他引:2  
In order to gain a clearer understanding of the kinetic control of ATP synthesis, rat liver and rat heart mitochondria were incubated under conditions that resulted in various rates of net ATP synthesis or ATP hydrolysis. Radiolabeled phosphate was included in the incubation media, and exchange rates between phosphate and ATP were determined as a function of rates of net ATP synthesis. Since ATP synthase is a highly reversible enzyme, the catalyzed reaction was expected to approach equilibrium especially at low rates of respiration and net ATP synthesis. Thus ADP + Pi V1 in equilibrium V2 ATP. If V1 is the rate of incorporation of radiolabeled phosphate into ATP, then net ATP synthesis (or hydrolysis) is V1 - V2. Since V1 and V1 - V2 could be measured, it was possible to calculate V2. V1 doubled in the transition from zero to maximal net ATP synthesis, whereas V2 decreased by over 90% when the rate of ATP synthesis was high due to high-media ADP. In heart mitochondria at 37 degrees C when respiration increased from 104 +/- 10 to 842 +/- 51 nanoatoms of O2/(min X mg), incorporation of [33P]phosphate into ATP (V1) increased from 1,100 +/- 60 to 1,978 +/- 121 and V2 decreased from 1,100 to near zero. These data demonstrate that mitochondrial ATP synthesis does not occur near equilibrium under physiological conditions and relatively high rates of ATP synthesis. A reaction with a high ratio of forward to reverse flux is obviously not near equilibrium. The important most sensitively controlled reaction appears to be V2, ATP hydrolysis. Possible mechanisms of kinetic control of V2 are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
P-glycoprotein (Pgp), the ATP-binding cassette multidrug transporter, exhibits a drug (substrate)-stimulatable ATPase activity, and vanadate (Vi) inhibits this activity by stably trapping the nucleoside diphosphate in the Pgp.ADP.Vi conformation. We recently demonstrated that Vi-induced 8-azido-[alpha-(32)P]ADP trapping into Pgp in the absence of substrate occurs both in the presence of 8-azido-[alpha-(32)P]ATP (following 8-azido-ATP hydrolysis) or 8-azido-[alpha-(32)P]ADP (without hydrolysis) and, the transition state intermediates generated under either condition are functionally indistinguishable. In this study, we compare the effect of substrates on Vi-induced 8-azido-[alpha-(32)P]ADP trapping into Pgp under both non-hydrolysis and hydrolysis conditions. We demonstrate that whereas substrates stimulate the Vi-induced trapping of 8-azido-[alpha-(32)P]ADP under hydrolysis conditions, they strongly inhibit Vi-induced trapping under non-hydrolysis conditions. This inhibition is concentration-dependent, follows first order kinetics, and is effected by drastically decreasing the affinity of nucleoside diphosphate for Pgp during trapping. However, substrates do not affect the binding of nucleoside diphosphate in the absence of Vi, indicating that the substrate-induced conformation exerts its effect at a step distinct from nucleoside diphosphate-binding. Our results demonstrate that during the catalytic cycle of Pgp, although the transition state, Pgp x ADP x P(i) (Vi), can be generated both via the hydrolysis of ATP or by directly providing ADP to the system, in the presence of substrate the reaction is driven in the forward direction, i.e. hydrolysis of ATP. These data suggest that substrate-stimulated ATP hydrolysis by Pgp is a vectorial process.  相似文献   

14.
V N Kasho  M Yoshida  P D Boyer 《Biochemistry》1989,28(17):6949-6954
The ATPase from the ATP synthase of the thermophilic bacterium PS3 (TF1), unlike F1 ATPase from other sources, does not retain bound ATP, ADP, and Pi at a catalytic site under conditions for single-site catalysis [Yohda, M., & Yoshida, M. (1987) J. Biochem. 102, 875-883]. This raised a question as to whether catalysis by TF1 involved alternating participation of catalytic sites. The possibility remained, however, that there might be transient but catalytically significant retention of bound reactants at catalytic sites when the medium ATP concentration was relatively low. To test for this, the extent of water oxygen incorporation into Pi formed by ATP hydrolysis was measured at various ATP concentrations. During ATP hydrolysis at both 45 and 60 degrees C, the extent of water oxygen incorporation into the Pi formed increased markedly as the ATP concentration was lowered to the micromolar range, with greater modulation observed at 60 degrees C. Most of the product Pi formed arose by a single catalytic pathway, but measurable amounts of Pi were formed by a pathway with high oxygen exchange. This may result from the presence of some poorly active enzyme. The results are consistent with sequential participation of three catalytic sites on the TF1 as predicted by the binding change mechanism.  相似文献   

15.
W D Frasch  B R Selman 《Biochemistry》1982,21(15):3636-3643
The reaction mechanism and substrate specificity of soluble chloroplast coupling factor 1 (CF1) from spinach were determined by using the purified isomers of chromium-nucleotide complexes either as substrates for the enzyme or as inhibitors of the Ca2+-dependent ATPase activity. The isolation of CrADP( [32P]Pi) formed upon the addition of the enzyme to [32P]Pi and lambda-bidentate CrADP and the observation that the lambda-bidentate CrADP epimer was 20-fold more effective in inhibiting the Ca2+-dependent ATPase activity than was the delta epimer suggest that the substrate of phosphorylation catalyzed by CF1 is the lambda-bidentate metal ADP epimer. Tridentate CrATP was hydrolyzed by soluble CF1 to CrADP(Pi) at an initial rate of 3.2 mumol (mg of CF1)-1 min-1, indicating that the tridentate metal ATP is the substrate for ATP hydrolysis. From these results a mechanism for the phosphorylation of ADP catalyzed by coupling factor 1 is proposed whereby the bidentate metal ADP isomer associates with the enzyme, phosphate inserts into the coordination sphere of the metal, and the oxygen of the beta-phosphate of ADP attacks the inorganic phosphate by an SN2 type reaction. The resulting product is the tridentate ATP ligand.  相似文献   

16.
D Leckband  G G Hammes 《Biochemistry》1988,27(10):3629-3633
The kinetic behavior of tightly bound nucleotides on chloroplast coupling factor from spinach was determined under phosphorylating and nonphosphorylating conditions. Chloroplast coupling factor 1 (CF1) was labeled with tightly bound radioactive ADP and/or ATP at two specific sites and reconstituted with thylakoid membranes depleted of CF1 by treatment with NaBr. The initial incorporation and dissociation of ADP from one of the sites requires light but occurs at the same rate under phosphorylating and non-phosphorylating conditions. The initial rate is considerably slower than the rate of ATP synthesis, but nucleotide exchange is very rapid during steady-state ATP synthesis. A direct correspondence between this nucleotide binding site and a site on soluble CF1 that hydrolyzes ATP was demonstrated. A second site binds MgATP very tightly; the MgATP does not dissociate during ATP synthesis nor does its presence alter the rate of ATP synthesis. This is analogous to the behavior found for soluble CF1 during ATP hydrolysis. These results demonstrate that the tight-binding nucleotide sites on soluble CF1 and membrane-bound coupling factor are essentially identical in terms of binding properties and kinetic behavior during ATP hydrolysis and synthesis.  相似文献   

17.
D Wu  P D Boyer 《Biochemistry》1986,25(11):3390-3396
When the heat-activated chloroplast F1 ATPase hydrolyzes [3H, gamma-32P]ATP, followed by the removal of medium ATP, ADP, and Pi, the enzyme has labeled ATP, ADP, and Pi bound to it in about equal amounts. The total of the bound [3H]ADP and [3H]ATP approaches 1 mol/mol of enzyme. Over a 30-min period, most of the bound [32P]Pi falls off, and the bound [3H]ATP is converted to bound [3H]ADP. Enzyme with such remaining tightly bound ADP will form bound ATP from relatively high concentrations of medium Pi with either Mg2+ or Ca2+ present. The tightly bound ADP is thus at a site that retains a catalytic capacity for slow single-site ATP hydrolysis (or synthesis) and is likely the site that participates in cooperative rapid net ATP hydrolysis. During hydrolysis of 50 microM [3H]ATP in the presence of either Mg2+ or Ca2+, the enzyme has a steady-state level of about one bound [3H]ADP per mole of enzyme. Because bound [3H]ATP is also present, the [3H]ADP is regarded as being present on two cooperating catalytic sites. The formation and levels of bound ATP, ADP, and Pi show that reversal of bound ATP hydrolysis can occur with either Ca2+ or Mg2+ present. They do not reveal why no phosphate oxygen exchange accompanies cleavage of low ATP concentrations with Ca2+ in contrast to Mg2+ with the heat-activated enzyme. Phosphate oxygen exchange does occur with either Mg2+ or Ca2+ present when low ATP concentrations are hydrolyzed with the octyl glucoside activated ATPase. Ligand binding properties of Ca2+ at the catalytic site rather than lack of reversible cleavage of bound ATP may underlie lack of oxygen exchange under some conditions.  相似文献   

18.
Bicarbonate, an activating anion of ATP hydrolysis, inhibited ATP synthesis coupled to succinate oxidation in beef heart submitochondrial particles but diminished the lag time and increased the steady-state velocity of the (32)Pi-ATP exchange reaction. The latter effects exclude the possibility that bicarbonate is inducing an intrinsic uncoupling between ATP hydrolysis and proton translocation at the level of F(1)F(o) ATPase. The inhibition of ATP synthesis was competitive with respect to ADP at low fixed [Pi], mixed at high [Pi] and non-competitive towards Pi at any fixed [ADP]. From these results we can conclude that (i) bicarbonate does not bind to a Pi site in the mitochondrial F(1); (ii) it competes with the binding of ADP to a low-affinity site, likely the low-affinity non-catalytic nucleotide binding site. It is postulated that bicarbonate stimulates ATP hydrolysis and inhibits ATP synthesis by modulating the relative affinities of the catalytic site for ATP and ADP.  相似文献   

19.
The ATP synthase in chromatophores of Rhodobacter caspulatus can effectively generate a transmembrane pH difference coupled to the hydrolysis of ATP. The rate of hydrolysis was rather insensitive to the depletion of ADP in the assay medium by an ATP regenerating system (phospho-enol-pyruvate (PEP) and pyruvate kinase (PK)). The steady state values of DeltapH were however drastically reduced as a consequence of ADP depletion. The clamped concentrations of ADP obtained using different PK activities in the assay medium could be calculated and an apparent Kd approximately 0.5 microM was estimated. The extent of proton uptake was also strongly dependent on the addition of phosphate to the assay medium. The Kd for this effect was about 70 microM. Analogous experiments were performed in membrane fragment from Escherichia coli. In this case, however, the hydrolysis rate was strongly inhibited by Pi, added up to 3 mM. Inhibition by Pi was nearly completely suppressed following depletion of ADP. The Kd's for the ADP and Pi were in the micromolar range and submillimolar range, respectively, and were mutually dependent from the concentration of the other ligand. Contrary to hydrolysis, the pumping of protons was rather insensitive to changes in the concentrations of the two ligands. At intermediate concentrations, proton pumping was actually stimulated, while the hydrolysis was inhibited. It is concluded that, in these two bacterial organisms, ADP and phosphate induce a functional state of the ATP synthase competent for a tightly coupled proton pumping, while the depletion of either one of these two ligands favors an inefficient (slipping) functional state. The switch between these states can probably be related to a structural change in the C-terminal alpha-helical hairpin of the epsilon-subunit, from an extended conformation, in which ATP hydrolysis is tightly coupled to proton pumping, to a retracted one, in which ATP hydrolysis and proton pumping are loosely coupled.  相似文献   

20.
Multidrug resistance protein 4 (MRP4/ABCC4), transports cyclic nucleoside monophosphates, nucleoside analog drugs, chemotherapeutic agents, and prostaglandins. In this study we characterize ATP hydrolysis by human MRP4 expressed in insect cells. MRP4 hydrolyzes ATP (Km, 0.62 mm), which is inhibited by orthovanadate and beryllium fluoride. However, unlike ATPase activity of P-glycoprotein, which is equally sensitive to both inhibitors, MRP4-ATPase is more sensitive to beryllium fluoride than to orthovanadate. 8-Azido[alpha-32P]ATP binds to MRP4 (concentration for half-maximal binding approximately 3 microm) and is displaced by ATP or by its non-hydrolyzable analog AMPPNP (concentrations for half-maximal inhibition of 13.3 and 308 microm). MRP4 substrates, the prostaglandins E1 and E2, stimulate ATP hydrolysis 2- to 3-fold but do not affect the Km for ATP. Several other substrates, azidothymidine, 9-(2-phosphonylmethoxyethyl)adenine, and methotrexate do not stimulate ATP hydrolysis but inhibit prostaglandin E2-stimulated ATP hydrolysis. Although both post-hydrolysis transition states MRP4.8-azido[alpha-32P]ADP.Vi and MRP4.8-azido[alpha-32P]ADP.beryllium fluoride can be generated, nucleotide trapping is approximately 4-fold higher with beryllium fluoride. The divalent cations Mg2+ and Mn2+ support comparable levels of nucleotide binding, hydrolysis, and trapping. However, Co2+ increases 8-azido[alpha-32P]ATP binding and beryllium fluoride-induced 8-azido[alpha-32P]ADP trapping but does not support steady-state ATP hydrolysis. ADP inhibits basal and prostaglandin E2-stimulated ATP hydrolysis (concentrations for half-maximal inhibition 0.19 and 0.25 mm, respectively) and beryllium fluoride-induced 8-azido[alpha-32P]ADP trapping, whereas Pi has no effect up to 20 mm. In aggregate, our results demonstrate that MRP4 exhibits substrate-stimulated ATP hydrolysis, and we propose a kinetic scheme suggesting that ADP release from the post-hydrolysis transition state may be the rate-limiting step during the catalytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号