首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The double-stranded (ds) RNA-dependent protein kinase (PKR) is a primary regulator of antiviral responses; however, the ability of dsRNA to activate nuclear factor-kappa B (NF-kappa B) and dsRNA + interferon gamma (IFN-gamma) to stimulate inducible nitric-oxide synthase (iNOS) expression by macrophages isolated from PKR(-/-) mice suggests that signaling pathways in addition to PKR participate in antiviral activities. We have identified a novel phospholipid-signaling cascade that mediates macrophage activation by dsRNA and viral infection. Bromoenol lactone (BEL), a selective inhibitor of the calcium-independent phospholipase A(2) (iPLA(2)), prevents dsRNA- and virus-induced iNOS expression by RAW 264.7 cells and mouse macrophages. BEL does not modulate dsRNA-induced interleukin 1 expression, nor does it affect dsRNA-induced NF-kappa B activation. Protein kinase A (PKA) and the cAMP response element binding protein (CREB) are downstream targets of iPLA(2), because selective PKA inhibition prevents dsRNA-induced iNOS expression, and the inhibitory actions of BEL on dsRNA-induced iNOS expression are overcome by the direct activation of PKA. In addition, BEL inhibits dsRNA-induced CREB phosphorylation and CRE reporter activation. PKR does not participate in iPLA(2) activation or iNOS expression, because dsRNA stimulates iPLA(2) activity and dsRNA + IFN-gamma induces iNOS expression and nitric oxide production to similar levels by macrophages isolated from PKR(+/+) and PKR(-/-) mice. These findings support a PKR-independent signaling role for iPLA(2) in the antiviral response of macrophages.  相似文献   

2.
The agonist-stimulated release of arachidonic acid (AA) from cellular phospholipids in many cell types (e.g. myocytes, beta-cells, and neurons) has been demonstrated to be primarily mediated by calcium-independent phospholipases A(2) (iPLA(2)s) that are inhibited by the mechanism-based inhibitor (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one (BEL). Recently, the family of mammalian iPLA(2)s has been extended to include iPLA(2)gamma, which previously could not be pharmacologically distinguished from iPLA(2)beta. To determine whether iPLA(2)beta or iPLA(2)gamma (or both) were the enzymes responsible for arginine vasopressin (AVP)-induced AA release from A-10 cells, it became necessary to inhibit selectively iPLA(2)beta and iPLA(2)gamma in intact cells. We hypothesized that the R- and S-enantiomers of BEL would possess different inhibitory potencies for iPLA(2)beta and iPLA(2)gamma. Accordingly, racemic BEL was separated into its enantiomeric constituents by chiral high pressure liquid chromatography. Remarkably, (S)-BEL was approximately an order of magnitude more selective for iPLA(2)beta in comparison to iPLA(2)gamma. Conversely, (R)-BEL was approximately an order of magnitude more selective for iPLA(2)gamma than iPLA(2)beta. The AVP-induced liberation of AA from A-10 cells was selectively inhibited by (S)-BEL (IC(50) approximately 2 microm) but not (R)-BEL, demonstrating that the overwhelming majority of AA release is because of iPLA(2)beta and not iPLA(2)gamma activity. Furthermore, pretreatment of A-10 cells with (S)-BEL did not prevent AVP-induced MAPK phosphorylation or protein kinase C translocation. Finally, two different cell-permeable protein kinase C activators (phorbol-12-myristate-13-acetate and 1,2-dioctanoyl-sn-glycerol) could not restore the ability of A-10 cells to release AA after exposure to (S)-BEL, thus supporting the downstream role of iPLA(2)beta in AVP-induced AA release.  相似文献   

3.
In this study the regulation of macrophage expression of cyclooxygenase-2 (COX-2) in response to dsRNA and virus infection was examined. Treatment of RAW 264.7 macrophages with dsRNA results in COX-2 mRNA accumulation and protein expression and the production of PGE(2). Similar to dsRNA, encephalomyocarditis virus (EMCV) infection of RAW 264.7 cells stimulates COX-2 expression and PGE(2) accumulation. The dsRNA-dependent protein kinase (PKR), which has been shown to participate in the regulation of gene expression in response to dsRNA and virus infection, does not appear to participate in the regulation of COX-2 expression by macrophages. Expression of dominant negative mutants of PKR in RAW 264.7 cells fails to attenuate dsRNA- and EMCV-induced COX-2 expression or PGE(2) production. Furthermore, dsRNA and EMCV stimulate COX-2 expression and PGE(2) accumulation to similar levels in macrophages isolated from wild-type and PKR-deficient mice. Recently, a novel PKR-independent role for the calcium-independent phospholipase A(2) (iPLA(2)) in the regulation of inducible NO synthase expression by macrophages in response to virus infection has been identified. The selective iPLA(2) suicide substrate inhibitor bromoenol lactone prevents dsRNA- and EMCV-stimulated inducible NO synthase expression; however, bromoenol lactone does not attenuate dsRNA- or EMCV-induced COX-2 expression by macrophages. In contrast, inhibition of NF-kappaB activation prevents dsRNA-stimulated COX-2 expression and PGE(2) accumulation by macrophages. These findings indicate that virus infection and treatment with dsRNA stimulate COX-2 expression by a mechanism that requires the activation of NF-kappaB and that is independent of PKR or iPLA(2) activation.  相似文献   

4.
5.
Song H  Ramanadham S  Bao S  Hsu FF  Turk J 《Biochemistry》2006,45(3):1061-1073
Phospholipases A2 (PLA2) comprise a superfamily of enzymes that hydrolyze phospholipids to a free fatty acid, e.g., arachidonate, and a 2-lysophospholipid. Dissecting their individual functions has relied in large part on pharmacological inhibitors that discriminate among PLA2. Group VIA PLA2 (iPLA2beta) has a GTSTG serine lipase consensus sequence, and studies with a bromoenol lactone (BEL) suicide substrate inhibitor have been taken to suggest that iPLA2beta participates in a wide variety of biological processes. Such conclusions presume inhibitor specificity. Inhibition by BEL requires its hydrolysis by and results in uncharacterized covalent modification(s) of iPLA2beta. We performed mass spectrometric analyses of proteolytic digests of BEL-treated iPLA2beta to identify modifications associated with loss of activity. The GTSTG active site and large flanking regions of sequence are not modified by BEL treatment, but most iPLA2beta Cys residues are alkylated at various BEL concentrations to form a thioether linkage to a BEL keto acid hydrolysis product. Synthetic Cys-containing peptides are alkylated when incubated with iPLA2beta and BEL, which reflects iPLA2beta-catalyzed BEL hydrolysis to a diffusible bromomethyl keto acid product that reacts with distant thiols. The BEL concentration dependence of Cys651 alkylation closely parallels that of loss of iPLA2beta activity. No amino acid residues other than Cys were found to be modified, suggesting that Cys alkylation is the covalent modification of iPLA2beta responsible for loss of activity, and the alkylating species appears to be a diffusible hydrolysis product of BEL rather than a tethered acyl-enzyme intermediate.  相似文献   

6.
A cytosolic 84-kDa group VIA phospholipase A(2) (iPLA(2)beta) that does not require Ca(2+) for catalysis has been cloned from several sources, including rat and human pancreatic islet beta-cells and murine P388D1 cells. Many potential iPLA(2)beta functions have been proposed, including a signaling role in beta-cell insulin secretion and a role in generating lysophosphatidylcholine acceptors for arachidonic acid incorporation into P388D1 cell phosphatidylcholine (PC). Proposals for iPLA(2)beta function rest in part on effects of inhibiting iPLA(2)beta activity with a bromoenol lactone (BEL) suicide substrate, but BEL also inhibits phosphatidate phosphohydrolase-1 and a group VIB phospholipase A(2). Manipulation of iPLA(2)beta expression by molecular biologic means is an alternative approach to study iPLA(2)beta functions, and we have used a retroviral construct containing iPLA(2)beta cDNA to prepare two INS-1 insulinoma cell clonal lines that stably overexpress iPLA(2)beta. Compared with parental INS-1 cells or cells transfected with empty vector, both iPLA(2)beta-overexpressing lines exhibit amplified insulin secretory responses to glucose and cAMP-elevating agents, and BEL substantially attenuates stimulated secretion. Electrospray ionization mass spectrometric analyses of arachidonic acid incorporation into INS-1 cell PC indicate that neither overexpression nor inhibition of iPLA(2)beta affects the rate or extent of this process in INS-1 cells. Immunocytofluorescence studies with antibodies directed against iPLA(2)beta indicate that cAMP-elevating agents increase perinuclear fluorescence in INS-1 cells, suggesting that iPLA(2)beta associates with nuclei. These studies are more consistent with a signaling than with a housekeeping role for iPLA(2)beta in insulin-secreting beta-cells.  相似文献   

7.
Ramanadham S  Hsu FF  Zhang S  Jin C  Bohrer A  Song H  Bao S  Ma Z  Turk J 《Biochemistry》2004,43(4):918-930
The death of insulin-secreting beta-cells that causes type I diabetes mellitus (DM) occurs in part by apoptosis, and apoptosis also contributes to progressive beta-cell dysfunction in type II DM. Recent reports indicate that ER stress-induced apoptosis contributes to beta-cell loss in diabetes. Agents that deplete ER calcium levels induce beta-cell apoptosis by a process that is independent of increases in [Ca(2+)](i). Here we report that the SERCA inhibitor thapsigargin induces apoptosis in INS-1 insulinoma cells and that this is inhibited by a bromoenol lactone (BEL) inhibitor of group VIA calcium-independent phospholipase A(2) (iPLA(2)beta). Overexpression of iPLA(2)beta amplifies thapsigargin-induced apoptosis of INS-1 cells, and this is also suppressed by BEL. The magnitude of thapsigargin-induced INS-1 cell apoptosis correlates with the level of iPLA(2)beta expression in various cell lines, and apoptosis is associated with stimulation of iPLA(2)beta activity, perinuclear accumulation of iPLA(2)beta protein and activity, and caspase-3-catalyzed cleavage of full-length 84 kDa iPLA(2)beta to a 62 kDa product that associates with nuclei. Thapsigargin also induces ceramide accumulation in INS-1 cells, and this response is amplified in cells that overexpress iPLA(2)beta. These findings indicate that iPLA(2)beta participates in ER stress-induced apoptosis, a pathway that promotes beta-cell death in diabetes.  相似文献   

8.
Many cells express a Group VIA phospholipase A2, designated iPLA2beta, that does not require calcium for activation, is stimulated by ATP, and is sensitive to inhibition by a bromoenol lactone suicide substrate (BEL). Studies in various cell systems have led to the suggestion that iPLA2beta has a role in phospholipid remodeling, signal transduction, cell proliferation, and apoptosis. We have found that pancreatic islets, beta-cells, and glucose-responsive insulinoma cells express an iPLA2beta that participates in glucose-stimulated insulin secretion but is not involved in membrane phospholipid remodeling. Additionally, recent studies reveal that iPLA2beta is involved in pathways that contribute to beta-cell proliferation and apoptosis, and that various phospholipid-derived mediators are involved in these processes. Detailed characterization of the enzyme suggests that the beta-cells express multiple isoforms of iPLA2beta, and we hypothesize that these participate in different cellular functions.  相似文献   

9.
Calcium-independent phospholipase A2 (iPLA2beta) has recently been suggested to regulate Ca2+ entry by activating store-operated Ca2+ channels. These studies have been conducted in mast cells using thapsigargin to deplete intracellular stores. In RBL 2H3 and bone marrow-derived mast cells (BMMCs), Ca2+ entry is critical for exocytosis and therefore we have examined whether the proposed mechanism would be relevant when a physiological stimulus is applied to these cells. Using an iPLA2beta antibody, we demonstrate that the 84kDa iPLA2beta is expressed in these mast cells. As bromoenol lactone (BEL) is a suicide-based irreversible inhibitor of iPLA2beta it was used to probe this potential mechanism. We observe inhibition of exocytosis stimulated either with antigen or with thapsigargin. However, BEL also inhibits exocytosis when stimulated using a Ca2+ ionophore A23187, which passively transports Ca2+ down a concentration gradient and also in permeabilised mast cells where Ca2+ entry is no longer relevant. Moreover, BEL has only a minor effect on antigen- or thapsigargin-stimulated Ca2+ signalling, both the release from internal stores and sustained elevation due to Ca2+ influx. These results cast doubt on the proposed mechanism involving iPLA2beta required for Ca2+ entry. Although inhibition of exocytosis by BEL could imply a requirement for iPLA2beta activation for exocytosis, an alternative explanation is that BEL inactivates other target proteins required for exocytosis.  相似文献   

10.
In response to virus infection or treatment with dsRNA, macrophages express the inducible form of cyclooxygenase-2 (COX-2) and produce proinflammatory prostaglandins. Recently, we have shown that NF-kappaB is required for encephalomyocarditis virus (EMCV)- and dsRNA-stimulated COX-2 expression in mouse macrophages. The dsRNA-dependent protein kinase R is not required for EMCV-stimulated COX-2 expression, suggesting the presence of protein kinase R-independent pathways in the regulation of this antiviral gene. In this study, the role of MAPK in the regulation of macrophage expression of cyclooxygenase-2 (COX)-2 in response to EMCV infection was examined. Treatment of mouse macrophages or RAW-264.7 cells with dsRNA or infection with EMCV stimulates the rapid activation of the MAPKs p38, JNK, and ERK. Inhibition of p38 and JNK activity results in attenuation while ERK inhibition does not modulate dsRNA- and EMCV-induced COX-2 expression and PGE2 production by macrophages. JNK and p38 appear to selectively regulate COX-2 expression, as inhibition of either kinase fails to prevent dsRNA- or EMCV-stimulated inducible NO synthase expression by macrophages. Using macrophages isolated from TLR3-deficient mice, we show that p38 and JNK activation and COX-2 expression in response to EMCV or poly(IC) does not require the presence the dsRNA receptor TLR3. These findings support a role for p38 and JNK in the selective regulation of COX-2 expression by macrophages in response to virus infection.  相似文献   

11.
The role of Ca2+-independent phospholipase A2 (iPLA2) in arachidonic (AA) and docosahexaenoic (DHA) acid incorporation and phospholipid remodelling in rat uterine stromal cells (UIII cells) was studied. Incorporation of AA and DHA into UIII cell phospholipids was Ca2+-independent. Bromoenollactone (BEL), a potent inhibitor of iPLA2, reduced lysophosphatidylcholine level and AA incorporation into phospholipids by approximately 20%. DHA incorporation was not affected by BEL, indicating that the pathways for AA and DHA incorporation are partially different. In control cells, the transfer of AA occurred mainly from diacyl-glycerophosphocholine (GroPCho) to alkenylacyl-glycerophosphoethanolamine (GroPEtn) and to a lesser extent from diacyl-GroPCho to diacyl-GroPEtn. [3H]DHA was redistributed from diacyl-GroPCho and alkylacyl-GroPEtn to alkenylacyl-GroPEtn. BEL treatment inhibited completely the redistributrion of AA within diacyl-GroPCho and diacyl -GroPEtn and reduced the [3H]DHA content of diacyl-GroPEtn, indicating that a BEL-sensitive iPLA2 controls the redistribution of polyunsaturated fatty acids to diacyl-GroPEtn. In contrast the redistribution of radioactive AA and DHA to alkenylacyl-GroPEtn was almost insensitive to BEL. The analysis of substrate specificity and BEL sensitivity of iPLA2 activity indicates that UIII cells exhibit at least two isoforms of iPLA2, one of which is BEL-sensitive and quite selective of diacyl species, and another one that is insensitive to BEL and selective for alkenylacyl-GroPEtn. Taken together, these results suggest that several iPLA2 participate independently in the remodelling of UIII cell phospholipids.  相似文献   

12.
13.
Calcium-independent phospholipase A(2)γ (iPLA(2)γ) (PNPLA8) is the predominant phospholipase activity in mammalian mitochondria. However, the chemical mechanisms that regulate its activity are unknown. Here, we utilize iPLA(2)γ gain of function and loss of function genetic models to demonstrate the robust activation of iPLA(2)γ in murine myocardial mitochondria by Ca(2+) or Mg(2+) ions. Calcium ion stimulated the production of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) from 1-palmitoyl-2-[(14)C]arachidonoyl-sn-glycero-3-phosphocholine during incubations with wild-type heart mitochondrial homogenates. Furthermore, incubation of mitochondrial homogenates from transgenic myocardium expressing iPLA(2)γ resulted in 13- and 25-fold increases in the initial rate of radiolabeled 2-AA-LPC and arachidonic acid (AA) production, respectively, in the presence of calcium ion. Mass spectrometric analysis of the products of calcium-activated hydrolysis of endogenous mitochondrial phospholipids in transgenic iPLA(2)γ mitochondria revealed the robust production of AA, 2-AA-LPC, and 2-docosahexaenoyl-LPC that was over 10-fold greater than wild-type mitochondria. The mechanism-based inhibitor (R)-(E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one (BEL) (iPLA(2)γ selective), but not its enantiomer, (S)-BEL (iPLA(2)β selective) or pyrrolidine (cytosolic PLA(2)α selective), markedly attenuated Ca(2+)-dependent fatty acid release and polyunsaturated LPC production. Moreover, Ca(2+)-induced iPLA(2)γ activation was accompanied by the production of downstream eicosanoid metabolites that were nearly completely ablated by (R)-BEL or by genetic ablation of iPLA(2)γ. Intriguingly, Ca(2+)-induced iPLA(2)γ activation was completely inhibited by long-chain acyl-CoA (IC(50) ~20 μm) as well as by a nonhydrolyzable acyl-CoA thioether analog. Collectively, these results demonstrate that mitochondrial iPLA(2)γ is activated by divalent cations and inhibited by acyl-CoA modulating the generation of biologically active metabolites that regulate mitochondrial bioenergetic and signaling functions.  相似文献   

14.
15.
Although group VIA Ca2+-independent phospholipase A2beta (iPLA2beta) has been implicated in various cellular events, the functions of other iPLA2 isozymes remain largely elusive. In this study, we examined the cellular functions of group VIB iPLA2gamma. Lentiviral transfection of iPLA2gamma into HEK293 cells resulted in marked increases in spontaneous, stimulus-coupled, and cell death-associated release of arachidonic acid (AA), which was converted to prostaglandin E2 with preferred cyclooxygenase (COX)-1 coupling. Conversely, treatment of HEK293 cells with iPLA2gamma small interfering RNA significantly reduced AA release, indicating the participation of endogenous iPLA2gamma. iPLA2gamma protein appeared in multiple sizes according to cell types, and a 63-kDa form was localized mainly in peroxisomes. Electrospray ionization mass spectrometry of cellular phospholipids revealed that iPLA2gamma and other intracellular PLA2 enzymes acted on different phospholipid subclasses. Transfection of iPLA2gamma into HCA-7 cells also led to increased AA release and prostaglandin E2 synthesis via both COX-1 and COX-2, with a concomitant increase in cell growth. Immunohistochemistry of human colorectal cancer tissues showed elevated expression of iPLA2gamma in adenocarcinoma cells. These results collectively suggest distinct roles for iPLA2beta and iPLA2gamma in cellular homeostasis and signaling, a functional link between peroxisomal AA release and eicosanoid generation, and a potential contribution of iPLA2gamma to tumorigenesis.  相似文献   

16.
Herein, we demonstrate that calcium-independent phospholipase A(2)γ (iPLA(2)γ) is a critical mechanistic participant in the calcium-induced opening of the mitochondrial permeability transition pore (mPTP). Liver mitochondria from iPLA(2)γ(-/-) mice were markedly resistant to calcium-induced swelling in the presence or absence of phosphate in comparison with wild-type littermates. Furthermore, the iPLA(2)γ enantioselective inhibitor (R)-(E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one ((R)-BEL) was markedly more potent than (S)-BEL in inhibiting mPTP opening in mitochondria from wild-type liver in comparison with hepatic mitochondria from iPLA(2)γ(-/-) mice. Intriguingly, low micromolar concentrations of long chain fatty acyl-CoAs and the non-hydrolyzable thioether analog of palmitoyl-CoA markedly accelerated Ca(2+)-induced mPTP opening in liver mitochondria from wild-type mice. The addition of l-carnitine enabled the metabolic channeling of acyl-CoA through carnitine palmitoyltransferases (CPT-1/2) and attenuated the palmitoyl-CoA-mediated amplification of calcium-induced mPTP opening. In contrast, mitochondria from iPLA(2)γ(-/-) mice were insensitive to fatty acyl-CoA-mediated augmentation of calcium-induced mPTP opening. Moreover, mitochondria from iPLA(2)γ(-/-) mouse liver were resistant to Ca(2+)/t-butyl hydroperoxide-induced mPTP opening in comparison with wild-type littermates. In support of these findings, cytochrome c release from iPLA(2)γ(-/-) mitochondria was dramatically decreased in response to calcium in the presence or absence of either t-butyl hydroperoxide or phenylarsine oxide in comparison with wild-type littermates. Collectively, these results identify iPLA(2)γ as an important mechanistic component of the mPTP, define its downstream products as potent regulators of mPTP opening, and demonstrate the integrated roles of mitochondrial bioenergetics and lipidomic flux in modulating mPTP opening promoting the activation of necrotic and necroapoptotic pathways of cell death.  相似文献   

17.
Here we tested the role of calcium influx factor (CIF) and calcium-independent phospholipase A2 (iPLA2) in activation of Ca2+ release-activated Ca2+ (CRAC) channels and store-operated Ca2+ entry in rat basophilic leukemia (RBL-2H3) cells. We demonstrate that 1) endogenous CIF production may be triggered by Ca2+ release (net loss) as well as by simple buffering of free Ca2+ within the stores, 2) a specific 82-kDa variant of iPLA2beta and its corresponding activity are present in membrane fraction of RBL cells, 3) exogenous CIF (extracted from other species) mimics the effects of endogenous CIF and activates iPLA2beta when applied to cell homogenates but not intact cells, 4) activation of ICRAC can be triggered in resting RBL cells by dialysis with exogenous CIF, 5) molecular or functional inhibition of iPLA2beta prevents activation of ICRAC, which could be rescued by cell dialysis with a human recombinant iPLA2beta, 6) dependence of ICRAC on intracellular pH strictly follows pH dependence of iPLA2beta activity, and 7) (S)-BEL, a chiral enantiomer of suicidal substrate specific for iPLA2beta, could be effectively used for pharmacological inhibition of ICRAC and store-operated Ca2+ entry. These findings validate and significantly advance our understanding of the CIF-iPLA2-dependent mechanism of activation of ICRAC and store-operated Ca2+ entry.  相似文献   

18.
19.
Islet Ca2+-independent phospholipase A2 (iPLA2) is postulated to mediate insulin secretion by releasing arachidonic acid in response to insulin secretagogues. However, the significance of iPLA2 signaling in insulin secretion in vivo remains unexplored. Here we investigated the physiological role of iPLA2 in beta-cell lines, isolated islets, and mice. We showed that small interfering RNA-specific silencing of iPLA2 expression in INS-1 cells significantly reduced insulin-secretory responses of INS-1 cells to glucose. Immunohistochemical analysis revealed that mouse islet cells expressed significantly higher levels of iPLA2 than pancreatic exocrine acinar cells. Bromoenol lactone (BEL), a selective inhibitor of iPLA2, inhibited glucose-stimulated insulin secretion from isolated mouse islets; this inhibition was overcome by exogenous arachidonic acid. We also showed that iv BEL administration to mice resulted in sustained hyperglycemia and reduced insulin levels during glucose tolerance tests. Clamp experiments demonstrated that the impaired glucose tolerance was due to insufficient insulin secretion rather than decreased insulin sensitivity. Short-term administration of BEL to mice had no effect on fasting glucose levels and caused no apparent pathological changes of islets in pancreas sections. These results unambiguously demonstrate that iPLA2 signaling plays an important role in glucose-stimulated insulin secretion under physiological conditions.  相似文献   

20.
Accumulating evidence suggests that the cytosolic calcium-independent phospholipase A(2) (iPLA(2)beta) manifests a signaling role in insulin-secreting (INS-1) beta-cells. Earlier, we reported that insulin-secretory responses to cAMP-elevating agents are amplified in iPLA(2)beta-overexpressing INS-1 cells (Ma Z, Ramanadham S, Bohrer A, Wohltmann M, Zhang S, and Turk J. J Biol Chem 276: 13198-13208, 2001). Here, immunofluorescence, immunoaffinity, and enzymatic activity analyses are used to examine distribution of iPLA(2)beta in stimulated INS-1 cells in greater detail. Overexpression of iPLA(2)beta in INS-1 cells leads to increased accumulation of iPLA(2)beta in the nuclear fraction. Increasing glucose concentrations alone results in modest increases in insulin secretion, relative to parental cells, and in nuclear accumulation of the iPLA(2)beta protein. In contrast, cAMP-elevating agents induce robust increases in insulin secretion and in time-dependent nuclear accumulation of iPLA(2)beta fluorescence, which is reflected by increases in nuclear iPLA(2)beta protein content and specific enzymatic activity. The stimulated effects are significantly attenuated in the presence of cell-permeable inhibitors of protein phosphorylation and glycosylation. These findings suggest that conditions that amplify insulin secretion promote translocation of beta-cell iPLA(2)beta to the nuclei, where it may serve a crucial signaling role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号