首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
In the presence of RNA polymerase, RNase H, discriminatory factors alpha and beta, Escherichia coli binding protein, DNA elongation factor I, DNA elongation factor II preparation, DNA polymerase III, and ATP, UTP, GTP, CTP, dATP, dTTP, dGTP, and dCTP, fd viral DNA can be quantitatively converted to RFII containing a unique gap in the linear minus strand. This gap, mapped with the aid of restriction endonucleases HinII and HpaII, is located within Fragment Hpa-H of the fd genome. The discrimination reaction has been resolved into two steps: Step A, fd viral DNA, E. coli binding protein, and discriminatory factors alpha and beta form a protein DNA complex; Step B, the complex isolated by agarose gel filtration selectively forms fd RFII when supplemented with RNase H, RNA polymerase, and the DNA elongation proteins. The omission of any of the proteins described above during the first reaction resulted in either no discrimination or a decrease in discrimination when the missing protein was added during the second step. Results are presented which indicate that E. coli binding protein, discriminatory factors alpha and beta, and RNase H must be present during the time RNA synthesis occurs in order to selectively form RFII from fd DNA and not phiX RFII. The amount of fd and phiX174 RNA-DNA hybrid formed in vitro is directly related to the DNA synthesis observed. Thus, under discriminatory conditions, only fd viral DNA leads to fd RNA-DNA complexes and no phiX RNA-DNA hybrid is formed. Under nondiscriminatory conditions, both DNAs yield RNA-DNA hybrids and DNA synthesis. In the absence of discriminatory factor alpha, no RNA-DNA hybrid is formed with either DNA, and in turn, no DNA synthesis is detected with either DNA template.  相似文献   

13.
14.
Metabolism of Okazaki fragments during simian virus 40 DNA replication.   总被引:3,自引:0,他引:3  
Essentially all of the Okazaki fragments on replicating Simian virus 40 (SV40)DNA could be grouped into one of three classes. Class I Okazaki fragments (about 20%) were separated from longer nascent DNA chains by a single phosphodiester bond interruption (nick) and were quantitatively identified by treating purified replicating DNA with Escherichia coli DNA ligase and then measuring the fraction of Okazaki fragments joined to longer nascent DNA chains. Similarly, class II Okazaki fragments (about 30%) were separated by a region of single-stranded DNA template (gap) that could be filled and sealed by T4 DNA polymerase plus E. coli DNA ligase, and class III fragments (about 50%) were separated by RNA primers that could be removed with E. coli DNA olymerase I, allowing the fragments to be joined with E. coli DNA ligase. These results were obtained with replicating SV40 DNA that had been briefly labeled with radioactive precursors in either intact cells or isolated nuclei. When isolated nuclei were further incubated in the presence of cytosol, all of the Okazaki fragments were converted into longer DNA strands as expected for intermediates in DNA synthesis. However, when washed nuclei were incubated in the abscence of cytosol, both class I and class II Okazaki fragments accumulated despite the excision of RNA primers: class III Okazaki fragments and RNA-DNA covalent linkages both disappeared at similar rates. These data demonstrate the existence of RNA primers in whole cells as well as in isolated nuclei, and identify a unique gap-filling step that is not simply an extension of the DNA chain elongation process concomitant with the excision of RNA primers. One or more factos found in cytosol, in addition to DNA polymerase alpha, are specifically involved in the gap-filling and ligation steps. The sizes of mature Okazaki fragments (class I) and Okazaki fragments whose synthesis was completed by T4 DNA polymerase were measured by gel electrophoresis and found to be broadly distributed between 40 and 290 nucleotides with an average length of 135 nucleotides. Since 80% and 90% of the Okazaments does not occur at uniformly spaced intervals along the DNA template. During the excision of RNA primers, nascent DNA chains with a single ribonucleotide covalently attached to the 5' terminus were identified as transient intermediates. These intermediates accumulated during excision of RNA primers in the presence of adenine 9-beta-D-arabinoside 5'-triphosphate, and those Okazaki fragments blocked by RNA primers (class III) were found to have originated the farthest from the 5' ends of long nascent DNA strands. Thus, RNA primers appear to be excised in two steps with the second step, removal of the final ribonucleotide, being stimulated by concomitant DNA synthesis. These and other data were used to construct a comprehensive metabolic pathway for the initiation, elongation, and maturation of Okazaki fragments at mammalian DNA replication forks.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号