首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The widely used plasticizer di(2-ethylhexyl)phthalate (DEHP), its hydrolysis products mono(2-ethylhexyl)phthalate (MEHP) and 2-ethylhexanol, and also phthalic acid have been tested for clastogenic activity in cultured Chinese hamster ovary (CHO) cells. Only MEHP was found to cause chromosome damage. MEHP was without effect in the SCE and HGPRT mutation test in CHO cells. The clastogenicity of MEHP suggests a role for this compound in the observed carcinogenicity of DEHP and its positive effect in the dominant lethal assay.  相似文献   

2.
Mono-(2-ethylhexyl) phthalate (MEHP), the active metabolite of di-(2-ethylhexyl) phthalate (DEHP), is a widespread environmental contaminant and has been proved to have potential adverse effects on the reproductive system, carcinogenicity, liver, kidney and developmental toxicities. However, the effect of MEHP on vascular system remains unclear. The main purpose of this study was to evaluate the cytotoxic effects of MEHP on human umbilical endothelial cells (HUVEC) and its possible molecular mechanism. HUVEC cells were treated with MEHP (0, 6.25, 12.5, 25,50 and 100 µM), and the cellular apoptosis and mitochondrial membrane potential as well as intracellular reactive oxygen species were determined. In present study, MEHP induced a dose-dependent cell injury in HUVEC cell via an apoptosis pathway as characterized by increased percentage of sub-G1, activation of caspase-3, -8and -9, and increased ratio of Bax/bcl-2 mRNA and protein expression as well as cytochrome C releasing. In addition, there was obvious oxidative stress, represented by decreased glutathione level, increased malondialdehyde level and superoxide dismutase activity. N-Acetylcysteine, as an antioxidant that is a direct reactive oxygen species scavenger, could effectively block MEHP-induced reactive oxygen species generation, mitochondrial membrane potential loss and cell apoptosis. These data indicated that MEHP induced apoptosis in HUVEC cells through a reactive oxygen species-mediated mitochondria-dependent pathway.  相似文献   

3.
The abilities of the hepatic peroxisome proliferators (HPPs) clofibrate, di(2-ethylhexyl)phthalate (DEHP), mono(2-ethylhexyl)- phthalate (MEHP), 2,4-dichlorophenoxy acetic acid (2,4-D), 2,4,5-trichlorophenoxy acetic acid (2,4,5-T) and tiadenol to induce morphological transformation and to increase the catalase activity of Syrian hamster embryo (SHE) cells were studied. DEHP, MEHP, clofibrate and tiadenol induced morphological transformation of SHE cells and increased the catalase activity. DEHP was more potent than clofibrate and tiadenol in both inducing catalase and morphological transformation, while MEHP seemed more potent than DEHP in inducing catalase, but not morphological transformation, 2,4,5-T and 2,4-D did not induce morphological transformation, but 2,4,5-T was more potent than clofibrate in increasing the catalase activity. These results show that several HPPs induce morphological transformation of SHE cells and an increase in the catalase activity. There is, however, no direct connection between these two parameters, as seen from the results of 2,4,5-T. The tumor promoter TPA, and the metal salt nickel sulphate, induced morphological transformation of SHE cells without any appreciable increase in the catalase activity. These results further corroborate the dissociation between induction of morphological transformation and the increase in catalase activity.Abbreviations Clofibrate ethyl-2-(p-chlorophenox) isobutyrate - 2,4-D 2,4-dichlorophenoxy acetic acid - DEHP di(2-ethylhexyl)phthalate - HPP hepatic peroxisome proliferator - MEHP mono(2-ethylhexyl)phthalate - SHE Syrian hamster embryo - 2,4,5-T 2,4,5-trichlorophenoxy acetic acid - tiadenol di(hydroxyethylthio)-1,10-decane  相似文献   

4.
5.
6.
Li H  Kim KH 《Biology of reproduction》2003,69(6):1964-1972
Di-(2-ethylhexyl) phthalate (DEHP) and its active metabolite, mono-(2-ethylhexyl) phthalate (MEHP), have been shown to cause reproductive toxicity in both developing and adult animals. In this study, we used organ cultures of fetal and neonatal rat testes to assess the in vitro effect of MEHP on seminiferous cord formation in Embryonic Day 13 (E13) testes and on the development of E18 and Postnatal Day 3 (P3) testes. Interestingly, MEHP had no effect on cord formation in the organ cultures of E13 testes, indicating that it has no effect on sexual differentiation of the indifferent gonad to testis. Consistently, the expression of a Sertoli cell-specific protein, mullerian inhibiting substance (MIS), or the number of gonocytes did not change in E13 testes after MEHP treatment. In contrast, MEHP decreased the levels of MIS and GATA-4 proteins in Sertoli cells and impaired Sertoli cell proliferation in the organ cultures of E18 and P3 testes. These results suggest that MEHP negatively influences proliferation and differentiation of Sertoli cells in both fetal and neonatal testes. In addition, MEHP treatment did not alter the number of gonocytes in E18 testes, whereas the number of gonocytes in P3 testes decreased in a dose-dependent manner, apparently due to enhanced apoptosis. These results suggest that MEHP adversely affects the gonocytes, which are mitotically active and undergoing migration and differentiation in neonatal testes, but it has no effect on fetal gonocytes that are mitotically quiescent.  相似文献   

7.
The aims of present study were to investigate the effect of phthalate (2-ethylhexyl) ester (DEHP) and mono-(2-ethylhexyl) phthalate (MEHP) on Th1/Th2 balance signaling for interleukin 4 (IL-4) expression in splenic lymphocytes, and contribution of MEHP to any hypothesized changes in vitro. Primary splenic lymphocytes were exposed to DEHP/MEHP. ELISA and Western blotting were used to detect proteins. Confocal-microscopy was used to examine nuclear translocation. Nuclear factor of activated T cells (NFAT) DNA binding activity was examined by electrophoretic mobility-shift assay. DEHP significantly increased IL-4 and interferon gamma (IFN-γ) level, and reduced Th1/Th2 ratio (reflected by IFN-γ/IL-4) with 5 μg/L Concanavalin A (ConA) treatment. While MEHP reduced Th1/Th2 ratio (represented by IFN-γ/IL-6). IL-4 mRNA was significantly increased by DEHP but not by MEHP after PMA and Ion treatment. DEHP significantly inhibited NFATp protein in cytosol and nucleus. DEHP augmented nuclear translocation of NFATc in transfected EL4 cells and NFAT DNA-binding activity. DEHP-mediated enhancement of calcium-dependent phosphatase calcineurin (CaN) protein, and NFAT and IL-4 expression were abrogated by calcium antagonist verapamil and CaN inhibitor tarcolimus. Ca2+/calmodulin antagonist chlorpromazine significantly suppressed IL-4 and CaN production with no NFAT mRNA change. Our study suggests that DEHP and MEHP impact Th1/Th2 balance by modulating different cytokines. DEHP-affected IL-4 expression through Ca/CaN/NFAT signaling pathway, but no effect was discovered for MEHP.  相似文献   

8.
Phthalate esters are considered endocrine disruptors that interfere with the endocrine balance and development of the mammalian testis. Mono-2-ethylhexyl phthalate (MEHP), the active metabolite of the ubiquitously used plasticizer di-2-ethylhexyl phthalate (DEHP), acts upon Sertoli cells as initial target. By subtractive cDNA libraries we identified genes deregulated as response to MEHP in primary cultures of mouse Sertoli cells. The expression of mouse stress inducible protein 1 (Stip1) was detected as upregulated as a result of MEHP exposure. Stip1 is a cochaperone protein that is homologous to the human heat shock cognate protein 70 (hsc70)/heat shock protein 90 (hsp90)-organizing protein (Hop). To assess the presence and localization of Stip1 in mouse testis and its potential role in stress defense, we studied the expression pattern of the Stip1 protein by immunohistochemistry and of the mRNA by in situ hybridization. Both the protein and the mRNA of Stip1 were mainly found in the cytoplasm of all types of spermatogonia and spermatocytes up till zygotene, the expression decreased during late pachytene and was very weak in diplotene spermatocytes and round spermatids. Interestingly, this expression pattern resembled the pattern of stress sensitivity of spermatogenic cells in that the most sensitive cell types show the weakest expression of Stip1. This suggests an important role for Stip1 in the ability of germ cells to survive in stress conditions including high temperatures.  相似文献   

9.
The degradation of bis(2-ethylhexyl) phthalate (DEHP) and its intermediary hydrolysis products 2-ethylhexanol (2-EH) and mono(2-ethylhexyl) phthalate (MEHP) was investigated in a methanogenic phthalic acid ester-degrading enrichment culture at 37°C. 2-Ethylhexanoic acid (2-EHA), a plausible degradation product of 2-EH, was also studied. The culture readily degraded 2-EH via 2-EHA to methane which was formed in stoichiometric amounts assuming complete degradation of 2-EH to methane and carbon dioxide. MEHP was degraded to stoichiometric amounts of methane with phthalic acid as a transient intermediate. DEHP remained unaffected throughout the experimental period (330 days).Abbreviations 2-EH 2-ethylhexyl alcohol - 2-EHA 2-ethylhexanoic acid - BBP butylbenzyl phthalate - Be-CoA benzoyl Coenzyme A - CoA Coenzyme A - DEHP bis(2-ethylhexyl) phthalate - MEHP mono(2-ethylhexyl) phthalate - MSW municipal solid waste - PA phthalic acid - PAE phthalic acid ester - TMS trimethylsilyl derivative  相似文献   

10.
Phthalates have been shown to elicit contrasting effects on the testis and the liver, causing testicular degeneration and promoting abnormal hepatocyte proliferation and carcinogenesis. In the present study, we compared the effects of phthalates on testicular and liver cells to better understand the mechanisms by which phthalates cause testicular degeneration. In vivo treatment of rats with di-(2-ethylhexyl) phthalate (DEHP) caused a threefold increase of germ cell apoptosis in the testis, whereas apoptosis was not changed significantly in livers from the same animals. Western blot analyses revealed that peroxisome proliferator-activated receptor (PPAR) alpha is equally abundant in the liver and the testis, whereas PPAR gamma and retinoic acid receptor (RAR) alpha are expressed more in the testis. To determine whether the principal metabolite of DEHP, mono-(2-ethylhexyl) phthalate (MEHP), or a strong peroxisome proliferator, 4-chloro-6(2,3-xylindino)-2-pyrimidinylthioacetic acid (Wy-14,643), have a differential effect in Sertoli and liver cells by altering the function of RAR alpha and PPARs, their nuclear trafficking patterns were compared in Sertoli and liver cells after treatment. Both MEHP and Wy-14,643 increased the nuclear localization of PPAR alpha and PPAR gamma in Sertoli cells, but they decreased the nuclear localization of RAR alpha, as previously shown. Both PPAR alpha and PPAR gamma were in the nucleus and cytoplasm of liver cells, but RAR alpha was predominant in the cytoplasm, regardless of the treatment. At the molecular level, MEHP and Wy-14,643 reduced the amount of phosphorylated mitogen-activated protein kinase (activated MAPK) in Sertoli cells. In comparison, both MEHP and Wy-14,643 increased phosphorylated MAPK in liver cells. These results suggest that phthalates may cause contrasting effects on the testis and the liver by differential activation of the MAPK pathway, RAR alpha, PPAR alpha, and PPAR gamma in these organs.  相似文献   

11.
Phthalates are plasticisers added to a wide variety of products, resulting in measurable exposure of humans. They are suspected to disrupt the thyroid axis as epidemiological studies suggest an influence on the peripheral thyroid hormone concentration. The mechanism is still unknown as only few in vitro studies within this area exist. The aim of the present study was to investigate the influence of three phthalate diesters (di-ethyl phthalate, di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP)) and two monoesters (mono-n-butyl phthalate and mono-(2-ethylhexyl) phthalate (MEHP)) on the differentiated function of primary human thyroid cell cultures. Also, the kinetics of phthalate metabolism were investigated. DEHP and its monoester, MEHP, both had an inhibitory influence on 3''-5''-cyclic adenosine monophosphate secretion from the cells, and MEHP also on thyroglobulin (Tg) secretion from the cells. Results of the lactate dehydrogenase-measurements indicated that the MEHP-mediated influence was caused by cell death. No influence on gene expression of thyroid specific genes (Tg, thyroid peroxidase, sodium iodine symporter and thyroid stimulating hormone receptor) by any of the investigated diesters could be demonstrated. All phthalate diesters were metabolised to the respective monoester, however with a fall in efficiency for high concentrations of the larger diesters DnBP and DEHP. In conclusion, human thyroid cells were able to metabolise phthalates but this phthalate-exposure did not appear to substantially influence selected functions of these cells.  相似文献   

12.
The common commercial use of phthalate esters has resulted in significant human exposure to these bioactive compounds. The facts that phthalate ester metabolites, like endogenous PGs, are peroxisome proliferator-activated receptor (PPAR) agonists, and that PPARgamma agonists induce lymphocyte apoptosis suggest that phthalate esters are immunosuppressants that could act together with PGs to modulate early B cell development. In this study we examined the effects of a metabolite of one environmental phthalate, mono(2-ethylhexyl)phthalate (MEHP), and 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), on developing B cells. MEHP inhibited [(3)H]thymidine incorporation by primary murine bone marrow B cells and a nontransformed murine pro/pre-B cell line (BU-11). Cotreatment with a retinoid X receptor alpha ligand, 9-cis-retinoic acid, decreased [(3)H]thymidine incorporation synergistically, thereby implicating activation of a PPARgamma-retinoid X receptor alpha complex. These results were similar to those obtained with the natural PPARgamma ligand 15d-PGJ(2). At moderate MEHP concentrations (25 or 100 microM for primary pro-B cells and a pro/pre-B cell line, respectively), inhibition of [(3)H]thymidine incorporation resulted primarily from apoptosis induction, whereas at lower concentrations, the inhibition probably reflected growth arrest without apoptosis. Cotreatment of bone marrow B cells with 15d-PGJ(2) and MEHP significantly enhanced the inhibition of [(3)H]thymidine incorporation seen with MEHP alone, potentially mimicking exposure in the bone marrow microenvironment where PG concentrations are high. Finally, MEHP- and 15d-PGJ(2)-induced death does not result from a decrease in NF-kappaB activation. These data demonstrate that environmental phthalates can cooperate with an endogenous ligand, 15d-PGJ(2), to inhibit proliferation of and induce apoptosis in developing bone marrow B cells, potentially via PPARgamma activation.  相似文献   

13.
14.
The environmental obesogen hypothesis proposes that exposure to endocrine disruptors during developmental ‘window’ contributes to adipogenesis and the development of obesity. MEHP [mono-(2-ethylhexyl) phthalate], a metabolite of the widespread plasticizer DEHP [di-(2-ethylhexyl) phthalate], has been found in exposed organisms and identified as a selective PPARγ (peroxisome-proliferator-activated receptor γ) modulator. However, implication of MEHP on adipose tissue development has been poorly investigated. In the present study, we show the dose-dependent effects of MEHP on adipocyte differentiation and GPDH (glycerol-3-phosphate dehydrogenase) activity in the murine 3T3-L1 cell model. MEHP induced the expression of PPARγ as well as its target genes required for adipogenesis in vitro. Moreover, MEHP perturbed key regulators of adipogenesis and lipogenic pathway in vivo. In utero exposure to a low dose of MEHP significantly increased b.w. (body weight) and fat pad weight in male offspring at PND (postnatal day) 60. In addition, serum cholesterol, TAG (triacylglycerol) and glucose levels were also significantly elevated. These results suggest that perinatal exposure to MEHP may be expected to increase the incidence of obesity in a sex-dependent manner and can act as a potential chemical stressor for obesity and obesity-related disorders.  相似文献   

15.
Di-(2-ethylhexyl) phthalate (DEHP) and its metabolite mono-(2-ethylhexyl) phthalate (MEHP) have been classified as toxicants to the reproductive system at the testis level and DEHP may also impair reproductive axis function at the pituitary levels. However, MEHP is 10-fold more potent than DEHP in toxicity and little is known about the toxicological effect of MEHP on pituitary. In this study, we demonstrated that 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), not 11β-HSD1, is strongly expressed in murine gonadotrope LβT2 cells. Interestingly, MEHP inhibited Hsd11b2 mRNA level and 11β-HSD2 enzyme activity in LβT2 cells at as low as 10−7 M. Corticosterone (CORT) at a concentration of 10−6 M significantly inhibited LβT2 cell proliferation after 2-day culture, and 10−6 M RU486, an antagonist of glucocorticoid receptor (GR), reversed this inhibition. However, in the presence of 10−5 or 10−4 M MEHP, the minimal concentration of CORT to inhibit the proliferation of LβT2 cells was lowered to 10−7 M, and 10−6 M RU486 was not able to completely reverse the CORT effect. In conclusion, along with the regulation of GR, 11β-HSD2 may have a key role in glucocorticoid metabolism in LβT2 cells. MEHP may participate in the glucocorticoid metabolism in LβT2 cells through inhibition of 11β-HSD2 enzyme activity. Such perturbation may be of pathological significance as MEHP may interfere with the reproductive system at pituitary level through regulation of glucocorticoid metabolism, especially in neonates with higher risk of phthalates exposure.  相似文献   

16.
Human metabolism of di(2-ethylhexyl) phthalate (DEHP) is complex and yields mono(2-ethylhexyl) phthalate (MEHP) and numerous oxidative metabolites. The oxidative metabolites, mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-carboxypentyl) phthalate (MECPP) and mono(2-carboxymethylhexyl) phthalate (MCMHP), have been considered to be better biomarkers for DEHP exposure assessment than MEHP because urinary levels of these metabolites are generally higher than MEHP, and their measurements are not subject to contamination. The urinary levels of the above metabolites, and of three other recently identified DEHP oxidative metabolites, mono(2-ethyl-3-carboxypropyl) phthalate (MECPrP), mono-2-(1-oxoethylhexyl) phthalate (MOEHP), and mono(2-ethyl-4-carboxybutyl) phthalate (MECBP), were measured in 129 adults. MECPP, MCMHP and MEHHP were present in all the samples analysed. MEHP and the other oxidative metabolites were detected less frequently: MEOHP (99%), MECBP (88%), MECPrP (84%), MEHP (83%) and MOEHP (77%). The levels of all DEHP metabolites were highly correlated (p<0.0001) with each other, confirming a common parent. The ? and ?-1 oxidative metabolites (MECPP, MCMHP, MEHHP and MEOHP) comprised 87.1% of all metabolites measured, and thus are most likely the best biomarkers for DEHP exposure assessment. The percentage of the unglucuronidated free form excreted in urine was higher for the ester linkage carboxylated DEHP metabolites compared with alcoholic and ketonic DEHP metabolites. The percentage of the unglucuronidated free form excreted in urine was higher for the DEHP metabolites with a carboxylated ester side-chain compared with alcoholic and ketonic metabolites. Further, differences were found between the DEHP metabolite profile between this adult population and that of six neonates exposed to high doses of DEHP through extensive medical treatment. In the neonates, MEHP represented 0.6% and MECPP 65.5% of the eight DEHP metabolites measured compared to 6.6% (MEHP) and 31.8% (MECPP) in the adults. Whether the observed differences reflect differences in route/duration of the exposure, age and/or health status of the individuals is presently unknown.  相似文献   

17.
The role of phagocytosis in eliminating apoptotic spermatogenic cells caused by mono(2-ethylhexyl) phthalate (MEHP) was studied. Twenty-one-day-old C57Bl/6N male mice were given a single dose of 800 mg/kg MEHP in corn oil by oral gavage and sacrificed at 1, 3, 5, 7 and 9 days after initial exposure. At the same time, the role of phagocytosis in MEHP related apoptosis was examined using microinjection of annexin V into the seminiferous tubules of living mice. Results showed that mice treated with MEHP had a lower rate of testis weight gain (lower regression line) and a significant TUNEL-positive spermatogenic cell number compared to control. However, this incident was reversible, and the number of TUNEL-positive cells returned to normal after 9 days. Mice microinjected with annexin V and later treated with MEHP showed a large amount of TUNEL-positive cells compared to mice treated with MEHP only. This clearly proves that phagocytosis plays an efficient and highly important role in eliminating dead cells in the injured testis of mice treated with MEHP.  相似文献   

18.
Concentrations of mono(2-ethylhexyl)phthalate (MEHP), and di(2-ethylhexyl)phthalate (DEHP), in serum of healthy volunteers were determined by high performance liquid chromatography (HPLC) with tandem mass spectrometry (LC/MS/MS). The serum was extracted with acetone, followed by hexane extraction under acidic conditions, and then applied to the LC/MS/MS. Recoveries of 20 ng/ml of MEHP and DEHP were 101+/-5.7 (n=6) and 102+/-6.5% (n=6), respectively. The limits of quantification (LOQ) of MEHP and DEHP in the method were 5.0 and 14.0 ng/ml, respectively. The concentration of MEHP in the serum was at or less than the LOQ. The concentration of DEHP in the serum was less than the LOQ. Contaminations of MEHP and DEHP from experimental reagents, apparatus and air during the procedure were less than the LOQ and were estimated to be <1.0 and 2.2+/-0.6 ng/ml, respectively. After subtraction of the contamination, the net concentrations of MEHP and DEHP in the serum were estimated at or <5 and <2 ng/ml, respectively. To decrease contamination by DEHP, the cleanup steps and the apparatus and solvent usage were minimized in the sample preparation procedures. The high selectivity of LC/MS/MS is the key for obtaining reliable experimental data from in the matrix-rich analytical samples and for maintaining a low level contamination of MEHP and DEHP in this experimental system. This method would be a useful tool for the detection of MEHP and DEHP in serum.  相似文献   

19.
Exposure to phthalates in utero alters fetal rat testis gene expression and testosterone production, but much remains to be done to understand the mechanisms underlying the direct action of phthalate within the fetal testis. We aimed to investigate the direct mechanisms of action of mono-(2-ethylhexyl) phthalate (MEHP) on the rat fetal testis, focusing on Leydig cell steroidogenesis in particular. We used an in vitro system based on the culture for three days, with or without MEHP, of rat fetal testes obtained at 14.5 days post-coitum.Exposure to MEHP led to a dose-dependent decrease in testosterone production. Moreover, the production of 5 alpha-dihydrotestosterone (5α-DHT) (-68%) and androstenedione (-54%) was also inhibited by 10 μM MEHP, whereas 17 alpha-hydroxyprogesterone (17α-OHP) production was found to increase (+41%). Testosterone synthesis was rescued by the addition of androstenedione but not by any of the other precursors used. Thus, the hormone data suggested that steroidogenesis was blocked at the level of the 17,20 lyase activity of the P450c17 enzyme (CYP17), converting 17α-OHP to androstenedione. The subsequent gene expression and protein levels supported this hypothesis. In addition to Cyp17a1, microarray analysis showed that several other genes important for testes development were affected by MEHP. These genes included those encoding insulin-like factor 3 (INSL3), which is involved in controlling testicular descent, and Inha, which encodes the alpha subunit of inhibin B.These findings indicate that under in vitro conditions known to support normal differentiation of the fetal rat testis, the exposure to MEHP directly inhibits several important Leydig cell factors involved in testis function and that the Cyp17a1 gene is a specific target to MEHP explaining the MEHP-induced suppression of steroidogenesis observed.  相似文献   

20.
Phthalate esters are ubiquitous environmental contaminants that are produced for a variety of common industrial and commercial purposes. We have shown that mono-(2-ethylhexyl) phthalate (MEHP), the toxic metabolite of di-(2-ethylhexyl) phthalate, induces bone marrow B cell apoptosis that is enhanced in the presence of the endogenous prostaglandin 15-deoxy-Delta((12, 14))-PGJ(2) (15d-PGJ(2)). Here, studies were performed to determine whether 15d-PGJ(2)-mediated enhancement of MEHP-induced apoptosis represents activation of an overlapping or complementary apoptosis pathway. MEHP and 15d-PGJ(2) induced significant apoptosis within 8 and 5 h, respectively, in a pro/pre-B cell line and acted cooperatively to induce apoptosis in primary pro-B cells. Apoptosis induced with each chemical was accompanied by activation of a combination of initiator caspases (caspases-2, -8, and -9) and executed by caspase-3. Apoptosis induced with MEHP and 15d-PGJ(2) was reduced in APAF1 null primary pro-B cells and accompanied by alteration of mitochondrial membranes, albeit with different kinetics, indicating an intrinsically activated apoptosis pathway. Significant Bax translocation to the mitochondria supports its role in initiating release of cytochrome c. Both chemicals induced Bid cleavage, a result consistent with a truncated Bid-mediated release of cytochrome c in an apoptosis amplification feedback loop; however, significantly more Bid was cleaved following 15d-PGJ(2) treatment, potentially differentiating the two pathways. Indeed, Bid cleavage and cytochrome c release following 15d-PGJ(2) but not MEHP treatment was profoundly inhibited by Z-VAD-FMK, suggesting that 15d-PGJ(2) activates apoptosis via two pathways, Bax mobilization and protease-dependent Bid cleavage. Thus, endogenous 15d-PGJ(2)-mediated enhancement of environmental chemical-induced apoptosis represents activation of an overlapping but distinct signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号