首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to determine the effect of elbow joint position on electromyographic (EMG) and mechanomyographic (MMG) activities of agonist and antagonist muscles in young and old women. Surface EMG and MMG were recorded from the triceps and biceps brachii, and brachioradialis muscles during isometric elbow extensions in young and old women. The measurements were carried out at an optimal joint angle (A(o)), as well as at smaller (A(s) = A(o) - 30 degrees ) and larger (A(l) = A(o) + 30 degrees ) angles. The normalized to force EMG amplitude (RMS-EMG/F) was smaller in old women compared to young in all muscles. The RMS-EMG/F of the triceps brachii muscle was not affected by muscle length while that of the biceps brachii and brachioradialis muscles increased at shortest muscle length in both groups. The normalized to force MMG amplitude (RMS-MMG/F) was smaller in old than in young in the triceps brachii muscle only. There was an increase in RMS-MMG/F with triceps brachii and biceps brachii muscle shortening in both groups, and in the brachioradialis muscle -- in young only. Compared to young, older women exhibited a bigger force fluctuation during maximum voluntary contraction, but these did not contribute significantly to the RMS-MMG. Skinfold thickness accounted for the RMS-EMG/F and RMS-MMG/F differences seen between old and young women in the biceps brachii muscle only. It is concluded that, the EMG and MMG response to muscles length change in agonist and antagonist muscles is generally similar in old and young women but the optimal angle shifts toward a bigger value in older women.  相似文献   

2.
Phonomyogram (PMG, or acoustic myogram) is known to increase with force in isometric contractions. We investigated this relationship for dynamic contractions against different inertias. PMG and surface electromyogram (EMG) from biceps brachii and brachioradialis muscles were simultaneously recorded with the angular acceleration of elbow flexions. These were self-initiated movements (30 degrees) toward a fixed target and performed against two different inertias. PMG and EMG were integrated from the onset of the signal to the end of the acceleration phase. Phono- and electromechanical delays were also measured. For integrated EMG (iEMG), there was a linear relationship between integrated PMG (iPMG) and force, the slope of which did not depend on inertia. There was also a linear relationship between iPMG or iEMG and angular acceleration, with a higher slope for the highest inertia condition. There was also a family of linear relationships between iPMG or iEMG and angular acceleration, and their slopes depended on inertia. Measurements of the phono- and electromechanical delays showed that onset of PMG followed that of EMG but preceded onset of acceleration. It is suggested that PMG expresses tension of the underlying muscle contractile elements. Given the simplicity of the PMG method, we conclude that PMG allows convenient evaluation of muscle tension during human dynamic contraction.  相似文献   

3.
The purpose of this study was to investigate whether children with cerebral palsy (CP), like typically developing peers, would compensate for muscle fatigue by recruiting additional motor units during a sustained low force contraction until task failure.Twelve children with CP and 17 typically developing peers performed one submaximal isometric elbow flexion contraction until the task could no longer be sustained at on average 25% (range 10–35%) of their maximal voluntary torque. Meanwhile surface electromyography (EMG) was measured from the biceps brachii and triceps brachii, and acceleration variations of the forearm were detected by an accelerometer. Slopes of the change in EMG amplitude and median frequency and accelerometer variation during time normalised to their initial values were calculated.Strength and time to task failure were similar in both groups. Children with CP exhibited a lower increase in EMG amplitude of the biceps brachii and triceps brachii during the course of the sustained elbow flexion task, while there were no significant group differences in median frequency decrease or acceleration variation increase. This indicates that children with CP do not compensate muscle fatigue with recruitment of additional motor units during sustained low force contractions.  相似文献   

4.
Conventional bipolar EMG provides imprecise muscle activation estimates due to possibly heterogeneous activity within muscles and due to improper alignment of the electrodes with the muscle fibers. Principal component analysis (PCA), applied on multi-channel monopolar EMG yielded substantial improvements in muscle activation estimates in pennate muscles. We investigated the degree of heterogeneity in muscle activity and the contribution of PCA to muscle activation estimates in biceps brachii (BB), which has a relatively simply parallel-fibered architecture. EMG-based muscle activation estimates were assessed by comparison to elbow flexion forces in isometric, two-state isotonic contractions in eleven healthy male subjects. Monopolar EMG was collected over the entire surface of the BB with about 63 electrodes. Estimation quality of different combinations of EMG channels showed that heterogeneous activation was found mainly in medio-lateral direction, whereas adding channels in the longitudinal direction added largely redundant information. Multi-channel bipolar EMG amplitude improved muscle activation estimates by 5–14% as compared to a single bipolar. PCA-processed monopolar EMG amplitude yielded a further improvement of (12–22%). Thus multi-channel EMG, processed with PCA, substantially improves the quality of muscle activation estimates compared conventional bipolar EMG in BB.  相似文献   

5.
The purpose of the study was (1) to assess changes in electromyographical (EMG) and mechanomyographical (MMG) signals of the biceps and triceps brachii muscles during absolute submaximal load holding in Parkinson’s disease patients tested during their medication “ON-phase” and in age-matched controls, and (2) to check whether mechanomyography can be useful in evaluation of neuromuscular system activity in Parkinson’s disease patients.The data analysis was performed on nine females with Parkinson’s disease and six healthy, age-matched females. The EMG and MMG signals were recorded from the short head of the biceps brachii (BB) and the lateral head of the triceps brachii (TB) muscles.It was concluded that compared to the controls, the Parkinson’s disease patients exhibited higher amplitude in the biceps brachii muscle and lower median frequency of the MMG signal in the both tested muscles. However, no differences in the EMG amplitude and an increase of the EMG median frequency in the triceps brachii muscle of the Parkinson’s disease group were observed. The MMG was not affected by physiological postural tremor and can depict differences between parkinsonians and controls, which may suggest that it is valuable tool for neuromuscular assessment for this condition.  相似文献   

6.
The purpose of this study was to examine the effects of interelectrode distance (IED) on the absolute and normalized electromyographic (EMG) amplitude and mean power frequency (MPF) versus isokinetic and isometric torque relationships for the biceps brachii muscle. Ten adults [mean+/-SD age=22.0+/-3.4 years] performed submaximal to maximal, isokinetic and isometric muscle actions of the dominant forearm flexors. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), the subjects performed randomly ordered, submaximal step muscle actions in 10% increments from 10% to 90% PT and MVC. Surface EMG signals were recorded simultaneously from bipolar electrode arrangements placed over the biceps brachii muscle with IEDs of 20, 40, and 60mm. Absolute and normalized EMG amplitude (muVrms and %max) increased linearly with torque during the isokinetic and isometric muscle actions (r(2) range=0.988-0.998), but there were no significant changes for absolute or normalized EMG MPF (Hz or %max) from 10% to 100% PT and MVC. In some cases, there were significant (p<0.05) differences among the three IED arrangements for absolute EMG amplitude and MPF values, but not for the normalized values. These findings suggested that for the biceps brachii muscle, IEDs between 20 and 60mm resulted in similar patterns for the EMG amplitude or MPF versus dynamic and isometric torque relationships. Furthermore, unlike the absolute EMG amplitude and MPF values, the normalized EMG data were not influenced by changes in IED between 20 and 60mm. Thus, normalized EMG data can be compared among previous studies that have utilized different IED arrangements.  相似文献   

7.
The study compared changes in intramuscular and surface recordings of EMG amplitude with ultrasound measures of muscle architecture of the elbow flexors during a submaximal isometric contraction. Ten subjects performed a fatiguing contraction to task failure at 20% of maximal voluntary contraction force. EMG activity was recorded in biceps brachii, brachialis, and brachioradialis muscles using intramuscular and surface electrodes. The rates of increase in the amplitude of the surface EMG for the long and short heads of biceps brachii and brachioradialis were greater than those for the intramuscular recordings measured at different depths. The amplitude of the intramuscular recordings from three muscles increased at a similar rate (P = 0.13), as did the amplitude of the three surface recordings from two muscles (P = 0.83). The increases in brachialis thickness (27.7 +/- 5.7 to 30.9 +/- 3.5 mm; P < 0.05) and pennation angle (10.9 +/- 3.5 to 16.5 +/- 4.8 degrees ; P = 0.003) were not associated with the increase in intramuscular EMG amplitude (P > 0.58). The increase in brachioradialis thickness (22.8 +/- 4.8 to 25.5 +/- 3.4 mm; P = 0.0075) was associated with the increase in the amplitude for one of two intramuscular EMG signals (P = 0.007, r = 0.79). The time to failure was more strongly associated with the rate of increase in the amplitude of the surface EMG than that for the intramuscular EMG, which suggests that the surface measurement provides a more appropriate measure of the change in muscle activation during a fatiguing contraction.  相似文献   

8.
The objective was to investigate muscle fatigue measuring changes in force output and force tremor and electromyographic activity (EMG) during two sustained maximal isometric contractions for 60s: (1) concurrent hand grip and elbow flexion (HG and EF); or (2) hand grip and elbow extension (HG and EE). Each force tremor amplitude was decomposed into four frequency bands (1-3, 4-10, 11-20, and 21-50Hz). Surface EMGs were recorded from the flexor digitorum superficialis (FDS), extensor digitorum (ED), biceps brachii (BB) and lateral head of triceps brachii (TB). The HG and EF forces for the HG and EF and the HG force for the HG and EE declined rapidly, whereas the EE force remained almost constant near to the initial value for the first 40s and then declined. The decrease in EMG amplitude was observed not for the FDS muscle but for the ED muscle. The HG tremor amplitude for each frequency band showed similar decreasing rate, whereas the decreases in EF and EE tremor amplitudes for the lower band (below 10Hz) were slower than those for the higher band (above 11Hz). The neuromuscular mechanisms underlying muscle fatigue during sustained maximal concurrent contractions of hand grip and elbow flexion or extension are discussed.  相似文献   

9.
The present work aimed at investigating the effects of mechanically amplified tremor on cortico-muscular coherence (CMC) in the alpha band. The study of CMC in this specific band is of particular interest because this coherence is usually absent in healthy individuals and it is an aberrant feature in patients affected by pathological tremors; understanding its mechanisms is therefore important. Thirteen healthy volunteers (23±4 years) performed elbow flexor sustained contractions both against a spring load and in isometric conditions at 20% of maximal voluntary isometric contraction (MVC). Spring stiffness was selected to induce instability in the stretch reflex servo loop. 64 EEG channels, surface EMG from the biceps brachii muscle and force were simultaneously recorded. Contractions against the spring resulted in greater fluctuations of the force signal and EMG amplitude compared to isometric conditions (p<.05). During isometric contractions CMC was systematically found in the beta band and sporadically observed in the alpha band. However, during the contractions against the spring load, CMC in the alpha band was observed in 12 out of 13 volunteers. Partial directed coherence (PDC) revealed an increased information flow in the EMG to EEG direction in the alpha band (p<.05). Therefore, coherence in the alpha band between the sensory-motor cortex and the biceps brachii muscle can be systematically induced in healthy individuals by mechanically amplifying tremor. The increased information flow in the EMG to EEG direction may reflect enhanced afferent activity from the muscle spindles. These results may contribute to the understanding of the presence of alpha band CMC in tremor related pathologies by suggesting that the origin of this phenomenon may not only be at cortical level but may also be affected by spinal circuit loops.  相似文献   

10.
This study was designed to investigate the local effect of experimental muscle pain on the MMG and the surface EMG during a range of sub-maximal isometric contractions. Muscle pain was induced by injections of hypertonic saline into the biceps brachii muscle in 12 subjects. Injections of isotonic saline served as a control. Pain intensity and location, MMG and surface EMG from the biceps brachii were assessed during static isometric (0%, 10%, 30%, 50% and, 70% of the maximal voluntary contraction) and ramp isometric (0-50% of the maximal voluntary contraction) elbow flexions. MMG and surface EMG signals were analyzed in the time and frequency domain. Experimentally induced muscle pain induced an increase in root mean square values of the MMG signal while no changes were observed in the surface EMG. Most likely this increase reflects changes in the mechanical contractile properties of the muscle and indicates compensatory mechanisms, i.e. decreased firing rate and increased twitch force to maintain a constant force output in presence of experimental muscle pain. Under well-controlled conditions, MMG recordings may be more sensitive than surface EMG recordings and clinically useful for detecting non-invasively increased muscle mechanical contributions during muscle pain conditions.  相似文献   

11.
The purpose of this study was to develop a wavelet-based method to predict muscle forces from surface electromyography (EMG) signals in vivo.The weightlifting motor task was implemented as the case study.EMG signals of biceps brachii,triceps brachii and deltoid muscles were recorded when the subject carried out a standard weightlifting motor task.The wavelet-based algorithm was used to process raw EMG signals and extract features which could be input to the Hill-type muscle force models to predict muscle forces.At the same time,the musculoskeletal model of subject's weightlifting motor task was built and simulated using the Computed Muscle Control (CMC) method via a motion capture experiment.The results of CMC were compared with the muscle force predictions by the proposed method.The correlation coefficient between two results was 0.99(p<0.01).However,the proposed method was easier and more efficiency than the CMC method.It has potential to be used clinically to predict muscle forces in vivo.  相似文献   

12.
The purpose of this study was to examine the electromyographic (EMG) instantaneous amplitude (IA) and instantaneous mean power frequency (IMPF) patterns for the biceps brachii muscle across a range of motion during maximal and submaximal concentric isokinetic muscle actions of the forearm flexors. Ten adults (mean +/- SD age = 22.0 +/- 3.4 years) performed a maximal and a submaximal [20% peak torque (PT)] concentric isokinetic forearm flexion muscle action at a velocity of 30 degrees s(-1). The surface EMG signal was detected from the biceps brachii muscle with a bipolar electrode arrangement, and the EMG IA and IMPF versus time relationships were examined for each subject using first- and second-order polynomial regression models. The results indicated that there were no consistent patterns between subjects for EMG IA or IMPF with increases in torque across the range of motion. Some of the potential nonphysiological factors that could influence the amplitude and/or frequency contents of the surface EMG signal during a dynamic muscle action include movement of the muscle fibers and innervation zone beneath the skin surface, as well as changes in muscle fiber length and the thickness of the tissue layer between the muscle and the recording electrodes. These factors may affect the EMG IA and IMPF patterns differently for each subject, thereby increasing the difficulty of drawing any general conclusions regarding the motor control strategies that increase torque across a range of motion.  相似文献   

13.
The relationships of EMG and muscle force with elbow joint angle were investigated for muscle modelling purposes. Eight subjects had their arms fixed in an isometric elbow jig where the biceps brachii was electrically stimulated (30 Hz) and also in maximum voluntary contraction (MVC). Biceps EMG and elbow torque transduced at the wrist were recorded at 0.175 rad intervals through 1.75 rad of elbow extension. The results revealed that while the torque-length relationship displayed the classic inverted U pattern in both evoked and MVC conditions, the force-length relationship displayed a monotonically increasing pattern. Analyses of variance of the EMG data showed that there were no significant changes in the EMG amplitudes for the different joint angles during evoked or voluntary contractions. The result also showed that electrical stimulation can effectively isolated the torque-angle and force-length relationships of the biceps brachii and that the myoelectric signal during isometric contraction is uniform regardless of the length of the muscle or the joint angle.  相似文献   

14.
Mechanical assistance on joint movement is generally beneficial; however, its effects on cooperative performance and muscle activity needs to be further explored. This study examined how motor performance and muscle activity are altered when mechanical assistance is provided during isometric force control of ramp-down and hold phases. Thirteen right-handed participants (age: 24.7 ± 1.8 years) performed trajectory tracking tasks. Participants were asked to maintain the reference magnitude of 47 N (REF) during isometric elbow flexion. The force was released to a step-down magnitude of either 75% REF or 50% REF and maintained, with and without mechanical assistance. The ramp-down durations of force release were set to 0.5, 2.5, or 5.0 s. Throughout the experiment, we measured the following: (1) the force output using load cells to compute force variability and overshoot ratio; (2) peak perturbation on the elbow movement using an accelerometer; (3) the surface electromyography (sEMG) from biceps brachii and triceps brachii muscles; and (4) EMG oscillation from the biceps brachii muscle in the bandwidth of 15–45 Hz. Our results indicated that mechanical assistance, which involved greater peak perturbation, demonstrated lower force variability than non-assistance (p < 0.01), while EMG oscillation in the biceps brachii muscle from 15 to 45 Hz was increased (p < 0.05). These findings imply that if assistive force is provided during isometric force control, the central nervous system actively tries to stabilize motor performance by controlling specific motor unit activity in the agonist muscle.  相似文献   

15.
It is generally assumed that raw surface EMG (sEMG) should be high pass filtered with cutoffs of 10-30 Hz to remove motion artifact before subsequent processing to estimate muscle force. The purpose of the current study was to explore the benefits of filtering out much of the raw sEMG signal when attempting to estimate accurate muscle forces. Twenty-five subjects were studied as they performed rapid static, anisotonic contractions of the biceps brachii. Biceps force was estimated (as a percentage of maximum) based on forces recorded at the wrist. An iterative approach was used to process the sEMG from the biceps brachii, using progressively greater high pass cutoff frequencies (20-440 Hz in steps of 30 Hz) with first and sixth order filters, as well as signal whitening, to determine the effects on the accuracy of EMG-based biceps force estimates. The results indicate that removing up to 99% of the raw sEMG signal power resulted in significant and substantial improvements in biceps force estimates. These findings challenge previous assumptions that the raw sEMG signal power between about 20 and 500 Hz should used when estimating muscle force. For the purposes of force prediction, it appears that a much smaller, high band of sEMG frequencies may be associated with force and the remainder of the spectrum has little relevance for force estimation.  相似文献   

16.
The purpose of this investigation was to determine the effect of hyperhydration on the electromyographic (EMG) and mechanomyographic (MMG) responses during isometric and isokinetic muscle actions of the biceps brachii. Eight (22.1 +/- 1.8 years, 79.5 +/- 22.8 kg) subjects were tested for maximal isometric, submaximal isometric, and maximal concentric isokinetic muscle strength in either a control (C) or hyperhydrated (H) state induced by glycerol ingestion while the EMG and MMG signals were recorded. Although fluid retention was significantly greater during the H protocol, the analyses indicated no change in torque, EMG amplitude, EMG mean power frequency (MPF), MMG amplitude, or MMG MPF with hyperhydration. These results indicated that glycerol-induced fluid retention does not affect the torque-producing capabilities of a muscle, the impulses (EMG) going to a muscle, or muscular vibrations (MMG). It has been suggested that EMG and MMG can be used as direct electrical/mechanical monitoring, which could be presented to trainers and athletes; however, before determining the utility of these signals, the MMG and EMG responses should be examined under a variety of conditions such as in the present study.  相似文献   

17.
This paper examines changes in the variability of electromyographic (EMG) activity and kinematics as a result of practicing a maximal performance task. Eight subjects performed rapid elbow flexion to a target in the horizontal plane. Four hundred trials were distributed equally over four practice sessions. A potentiometer at the elbow axis of rotation of a manipulandum recorded the angular displacement. The EMG activity of the biceps and the triceps brachii was monitored using Beckman surface electrodes. Limb speed increased while both target error and trajectory (velocity versus position) variability decreased. There was an increase in the absolute measure of total EMG variability (the first standard deviation at each point of the biceps and triceps waveform multiplied together). However, the coefficient of variation (the first standard deviation divided by the mean and the result multiplied by 100) of the mean amplitude value of the individual EMG bursts decreased. The variability of triceps motor time also decreased while the variability biceps motor time remained unchanged. The results demonstrated a clear relationship between kinematic and EMG variability. The EMG and the trajectory data suggest that practice resulted in greater central nervous system control over both the spatial-temporal aspects of movement and the magnitude of the biceps and triceps muscle force-impulses.  相似文献   

18.
The aim of the study was to investigate the recovery of the maximum voluntary contraction force (MVC), the endurance time and electromyographical (EMG) parameters following exhaustive dynamic exercise of the m. biceps brachii. EMG recordings were made in ten healthy subjects using bipolar surface electrodes placed over the common belly of the left arm biceps muscle. Up to 25 h post-exercise, the maximum contraction force and the EMG signal were recorded alternately at regular intervals. The EMG signal was recorded during 30-s contractions at 40% of the pre-fatigued MVC. Four hours and 25 h post-exercise, the endurance time of a 40% pre-fatigued MVC was recorded. Up to 25 h after the exercise the maximum contraction force, the endurance time and the EMG parameters were significantly different from the pre-exercise values. Nine out of ten subjects complained that muscle soreness had developed. Thus, long-lasting changes are found after exhaustive dynamic exercise, not only in the MVC and the muscle's endurance capacity, but also in the EMG signal.  相似文献   

19.
The purpose of this study was to examine the effect of joint angle on the relationship between force and electromyogram (EMG) amplitude and median frequency, in the biceps, brachioradialis and triceps muscles. Surface EMG were measured at eight elbow angles, during isometric flexion and extension at force levels from 10% to 100% of maximum voluntary contraction (MVC). Joint angle had a significant effect on MVC force, but not on MVC EMG amplitude in all of the muscles examined. The median frequency of the biceps and triceps EMG decreased with increasing muscle length, possibly due to relative changes in electrode position or a decrease in muscle fibre diameter. The relationship between EMG amplitude and force, normalised with respect to its maximum force at each angle, did not vary with joint angle in the biceps or brachioradialis muscles over all angles, or in the triceps between 45° and 120° of flexion. These results suggest that the neural excitation level to each muscle is determined by the required percentage of available force rather than the absolute force required. It is, therefore, recommended that when using surface EMG to estimate muscle excitation, force should be normalised with respect to its maximum value at each angle.  相似文献   

20.
The aim of this study was to discriminate fatigue of upper limb muscles depending on the external load, through the development and analysis of a muscle fatigue index. Muscle fatigue is expressed by a fatigue index based on an amplitude parameter (calculated in the time domain) and a fatigue index based on a frequency parameter (a parameter calculated in the frequency domain). The fatigue index involves a regression function that describes changes in the EMG signal parameter, time elapsing before muscle fatigue and the probability of specific trends in changes in EMG parameters for the population under study.

The experimental study covered a group of 10 young men. During the study, they exerted force at a specific level and for a specific time in 12 load variants. During the study, EMG signals from four muscles of the upper limb were recorded (trapezius pars descendents, biceps brachii caput breve, extensor carpi radialis brevis, flexor carpi ulnaris). For each variant and for each examined muscles, the value of the fatigue index was calculated. Values of that index quantitatively expressed fatigue of a specific muscle in a specific load variant.

A statistical analysis indicated variation in the fatigue of the biceps brachii caput breve, extensor carpi radialis brevis, and flexor carpi ulnaris muscles depending on the external load (load variant) according to the task performed with the upper limb.

The study demonstrated usefulness of the fatigue index in expressing quantitatively muscle fatigue and in discriminating muscle fatigue depending on the external load.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号