共查询到20条相似文献,搜索用时 31 毫秒
1.
The ligand profile for three odorant binding proteins (OBPs) of the rat have been determined using a large number of odorous compounds from different chemical classes. To evaluate the binding spectra of distinct subtypes, all OBPs were produces in Escherichia coli as recombinant His-tagged fusion proteins. The individual binding properties of each OBP subtype were analysed using a large array of organic compounds, representing derivatives of aliphatic and aromatic compounds, as well as terpenes, pyrazines and thiazoles, in a competitive spectroscopic binding assay with various fluorescence chromophores as the specific interacting partner for the OBPs. Most of the compounds were identified to interact only with one OBP subtype. But interestingly, a small change, for example in the 2-methyl or 2-ethoxy side chain in the pyrazine and thiazole derivatives to a 2-isobutyl group, caused overlapping binding affinities to rat-OBP1 and rat-OBP3. However, the data strongly support the notion that each OBP subtype displays a characteristic ligand binding profile and interacts with a different subset of exogenous organic compounds in a micromolar range. 相似文献
2.
Apparently homogeneous odorant binding protein purified from pig nasal mucosa (pOBP) exhibited subunit molecular masses of 17 223, 17 447, and 17 689 (major component) Da as estimated by ESI/MS. According to gel filtration, this protein, its truncated forms, and/or its variants are homodimeric under physiologic conditions (pH 6-7, 0.1 M NaCl). The dimer if monomer equilibrium shifts toward a prevalent monomeric form at pH <4.5. Velocity sedimentation reveals a monomeric state of OBP at both pH 7.2 and 3.5, indicating a pressure-induced dissociation of the homodimer. High-sensitivity differential scanning calorimetry (HS-DSC) shows that the unfolding transition of pOBP is reversible at neutral pH. It is characterized by the transition temperature of 69.23 degrees C and an enthalpy of 391.1 kJ/mol per monomer. The transition heat capacity curve of pOBP is well-approximated by the two-state model on the level of subunit, indicating that the two monomers behave independently. Isothermal titration calorimetry (ITC) shows that at physiological pH pOBP binds 2-isobutyl-3-methoxypyrazine (IBMP) and 3,7-dimethyloctan-1-ol (DMO) with association constants of 3.19 x 10(6) and 4.94 x 10(6) M(-)(1) and enthalpies of -97.2 and -87.8 kJ/mol, respectively. The binding stoichiometry of both ligands is nearly one molecule of ligand per homodimer of pOBP. The interaction of pOBP with both ligands is enthalpically driven with an unfavorable change of entropy. The binding affinity of pOBP with IBMP does not change significantly at acidic pH, while the binding stoichiometry is nearly halved. According to HS-DSC data, the interaction with IBMP and DMO leads to a substantial stabilization of the pOBP folded structure, which is manifested by the increase in the unfolding temperature and enthalpy. The calorimetric data allow us to conclude that the mechanism of binding of the studied odorants to pOBP is not dominated by a hydrophobic effect related to any change in the hydration state of protein and ligand groups but, most likely, is driven by polar and van der Waals interactions. 相似文献
3.
Ramoni R Spinelli S Grolli S Conti V Merli E Cambillau C Tegoni M 《Biochimica et biophysica acta》2008,1784(4):651-657
The X-ray structure of bovine Odorant Binding Protein (bOBP) revealed its association as a domain swapped dimer. bOBP, devoid of any cysteines, contrasts with other mammalian OBPs, which are monomeric and possess at least one disulfide bridge. We have produced a mutant of bOBP in which a glycine residue was inserted after position 121. This mutation yielded a monomeric bOBP-121Gly+ in which domain swapping has been reverted. Here, we have subsequently introduced two mutations, Trp64Cys and His155Cys, in view to stabilize the putative monomer with a disulfide bridge. We have determined the crystal structure of this triple mutant at 1.65 A resolution. The mutant protein is monomeric, stabilized by a disulfide bridge between Trp64Cys and His155Cys, with a backbone superimposable to that of native bOBP, with the exception of the hinge and of the 10 residues at the C-terminus. bOBP triple mutant binds 1-amino-anthracene, 1-octen-3-ol (bOBP co-purified ligand) and other ligands with microM Kd values comparable to those of the swapped dimer. 相似文献
4.
5.
Andreas Schwaighofer Maria Pechlaner Chris Oostenbrink Caroline Kotlowski Can Araman Rosa Mastrogiacomo Paolo Pelosi Wolfgang Knoll Christoph Nowak Melanie Larisika 《Biochemical and biophysical research communications》2014
Molecular interactions between odorants and odorant binding proteins (OBPs) are of major importance for understanding the principles of selectivity of OBPs towards the wide range of semiochemicals. It is largely unknown on a structural basis, how an OBP binds and discriminates between odorant molecules. Here we examine this aspect in greater detail by comparing the C-minus OBP14 of the honey bee (Apis mellifera L.) to a mutant form of the protein that comprises the third disulfide bond lacking in C-minus OBPs. Affinities of structurally analogous odorants featuring an aromatic phenol group with different side chains were assessed based on changes of the thermal stability of the protein upon odorant binding monitored by circular dichroism spectroscopy. Our results indicate a tendency that odorants show higher affinity to the wild-type OBP suggesting that the introduced rigidity in the mutant protein has a negative effect on odorant binding. Furthermore, we show that OBP14 stability is very sensitive to the position and type of functional groups in the odorant. 相似文献
6.
Odorant binding proteins (OBP's) are small hydrophilic proteins, belonging to the lipocalin family dedicated to bind and transport small hydrophobic ligands. Despite many works, the mechanism of ligand binding, together with the functional role of these proteins remains a topic of debate and little is known at the atomic level. The present work reports a computational study of odorants capture and release by an OBP, using both constrained and unconstrained simulations, giving a glimpse on the molecular mechanism of chemoreception. The residues at the origin of the regulation of the protein door opening are identified and a tyrosine amino-acid together with other nearby residues appear to play a crucial role in allowing this event to occur. The simulations reveal that this tyrosine and the protein's L5 loop are implicated in the ligand contact with the protein and act as an anchoring point for the ligand. The protein structural features required for the ligand entry are highly conserved among many transport proteins, suggesting that this mechanism could somewhat be extended to some members of the larger family of lipocalin. 相似文献
7.
Unfolding and refolding of porcine odorant binding protein in guanidinium hydrochloride: equilibrium studies at neutral pH 总被引:1,自引:0,他引:1
Parisi M Mazzini A Sorbi RT Ramoni R Grolli S Favilla R 《Biochimica et biophysica acta》2003,1652(2):115-125
Unfolding and refolding studies on porcine odorant binding protein (pOBP) have been performed at pH 7 in the presence of guanidinium hydrochloride (GdnHCl). Unfolding, monitored by following changes of protein fluorescence and circular dichroism (CD), was found to be a reversible process, in terms of recovered structure and function. The equilibrium transition data were fitted by a simple two-state sigmoidal function of denaturant concentration and the thermodynamic folding parameters, derived from the two techniques, were very similar (average values: C(1/2) approximately 2.4 M, m approximately 2 kcal mol(-1) M(-1), DeltaG(unf,w)(0) approximately 4.7 kcal mol(-1)). The transition was independent of protein concentration, indicating that only monomeric species are involved. Only a minor protective effect by the fluorescent ligand 1-amino-anthracene (AMA) against protein unfolding was detected, whereas dihydromyrcenol (DHM) stabilised the protein to a larger extent (DeltaC(1/2) approximately 0.5 M). Refolding was complete, when the protein, denatured with GdnHCl, was diluted with buffer. On the other hand, refolding by dialysis was largely prevented by concomitant aggregation. The present results on pOBP are compared with those on bovine OBP (bOBP) [Biochim. Biophys. Acta 1599 (2002) 90], where subunit folding is accompanied by domain swapping. We finally suggest that the generally observed two-state folding of many lipocalins is probably favoured by their beta-barrel topology. 相似文献
8.
Florence Vincent Roberto Ramoni Silvia Spinelli Stefano Grolli Mariella Tegoni Christian Cambillau 《European journal of biochemistry》2004,271(19):3832-3842
The structure of bovine odorant-binding protein (bOBP) revealed a striking feature of a dimer formed by domain swapping [Tegoni, M., Ramoni, R., Bignetti, E., Spinelli, S. & Cambillau, C. (1996) Nat. Struct. Biol.3, 863-867; Bianchet, M.A., Bains, G., Pelosi, P., Pevsner, J., Snyder, S.H., Monaco, H.L. & Amzel, L.M. (1996) Nat. Struct. Biol.3, 934-939] and the presence of a naturally occuring ligand [Ramoni, R., Vincent, F., Grolli, S., Conti, V., Malosse, C., Boyer, F.D., Nagnan-Le Meillour, P., Spinelli, S., Cambillau, C. & Tegoni, M. (2001) J. Biol. Chem.276, 7150-7155]. These features led us to investigate the binding of odorant molecules with bOBP in solution and in the crystal. The behavior of odorant molecules in bOBP resembles that observed with porcine OBP (pOBP), although the latter is monomeric and devoid of ligand when purified. The odorant molecules presented K(d) values with bOBP in the micromolar range. Most of the X-ray structures revealed that odorant molecules interact with a common set of residues forming the cavity wall and do not exhibit specific interactions. Depending on the ligand and on the monomer (A or B), a single residue--Phe89--presents alternate conformations and might control cross-talking between the subunits. Crystal data on both pOBP and bOBP, in contrast with binding and spectroscopic studies on rat OBP in solution, reveal an absence of significant conformational changes involving protein loops or backbone. Thus, the role of OBP in signal triggering remains unresolved. 相似文献
9.
10.
11.
Human odorant‐binding protein, OBPIIa, is expressed by nasal epithelia to facilitate transport of hydrophobic odorant molecules across the aqueous mucus. Here, we report its crystallographic analysis at 2.6 Å resolution. OBPIIa is a monomeric protein that exhibits the classical lipocalin fold with a conserved eight‐stranded β‐barrel harboring a remarkably large hydrophobic pocket. Basic residues within the four loops that shape the entrance to this ligand‐binding site evoke a positive electrostatic potential. Human OBPIIa shows distinct features compared with other mammalian OBPs, including a potentially reactive Cys side chain within its pocket similar to human tear lipocalin. Proteins 2015; 83:1180–1184. © 2015 Wiley Periodicals, Inc. 相似文献
12.
Vertebrate opsins are classified into one of five classes on the basis of amino acid similarity. These classes are short wavelength sensitive 1 and 2 (SWS1, SWS2), medium/long wavelength sensitive (M/LWS), and rod opsin like 1 and 2 (RH1, RH2). In bovine rod opsin (RH1), two critical amino acids form a salt bridge in the apoprotein that maintains the opsin in an inactive state. These residues are K296, which functions as the chromophore binding site, and E113, which functions as the counterion to the protonated Schiff base. Corresponding residues in each of the other vertebrate opsin classes are believed to play similar roles. Previous reports have demonstrated that mutations in these critical residues result in constitutive activation of transducin by RH1 class opsins in the absence of chromophore. Additionally, recent reports have shown that an E113Q mutation in SWS1 opsin is constitutively active. Here we ask if the other classes of vertebrate opsins maintain activation characteristics similar to that of bovine RH1 opsin. We approach this question by making the corresponding substitutions which disrupt the K296/E113 salt bridge in opsins belonging to the other vertebrate opsin classes. The mutant opsins are tested for their ability to constitutively activate bovine transducin. We demonstrate that mutations disrupting this key salt bridge produce constitutive activation in all classes. However, the mutant opsins differ in their ability to be quenched in the dark state by the addition of chromophore as well as in their level of constitutive activation. The differences in constitutive activation profiles suggest that structural differences exist among the opsin classes that may translate into a difference in activation properties. 相似文献
13.
为探究小菜蛾Plutella xylostella L.触角中高表达的气味结合蛋白PxylOBP33的结合能力和结合模式,本研究通过Swiss-model在线服务器对PxylOBP33同源建模,使用ProCheck、Verify-3D和ERRAT 3种方法对建模质量开展了评价,通过AutoDock软件对PxylOBP33与寄主植物挥发物和性信息素及其类似物等54种相关信息化学物质进行分子对接。结果显示,小菜蛾PxylOBP33为含有6个α螺旋的球状蛋白质,经ProCheck、Verify-3D以及ERRAT评价,所得模型质量良好。PxylOBP33主要通过氢键、疏水作用和范德华力与D-柠檬烯、α-松油烯、乙酸苯甲酯、顺-3-己烯异戊酸酯、罗勒烯和里那醇等18种一般寄主植物挥发物,异硫氰酸苯乙酯、异硫氰酸苯酯和对甲氧异硫氰酸苯酯等4种十字花科植物特有的挥发物以及顺-11-十六碳烯乙酸酯等9种性信息素及类似物有较好的结合特征。研究结果表明小菜蛾PxylOBP33可能参与了小菜蛾对寄主植物挥发物和性信息素的识别过程。 相似文献
14.
Dissociation of bovine odorant binding protein (bOBP) dimers to monomers at pH 2.5 has been confirmed through size exclusion chromatography experiments. Moreover, structural and binding properties of the acidic monomer and neutral dimer have been compared using a combination of experimental (circular dichroism and fluorescence) and computational (molecular dynamics) techniques. The secondary and tertiary structures of bOBP are largely maintained at acidic pH, but molecular dynamics simulations suggest the loop regions (N-terminal residues, Omega-loop and C-terminal segments) are more relaxed and Phe36 and Tyr83 residues are involved in the regulation of the binding cavity entrance. The formation of a molten globule state at acidic pH, suggested by the strong enhancement of fluorescence of 8-anilino-1-naphtalenesulphonic acid (ANS), is not confirmed by any significant change in the near UV circular dichroism spectrum. Functionality measurements, deduced from the interaction of bOBP with 1-amino-anthracene (AMA), show that the binding capacity of the protein at acidic pH is preserved, though slightly looser than at neutral pH. Unfolding of acidic bOBP, induced by guanidinium chloride (GdnHCl), was investigated by means of CD spectroscopy, steady state fluorescence, fluorescence anisotropy and light scattering. The stability of the acidic monomer is lower than that of the neutral dimer, owing to the loss of the swapping interactions, but renaturation is completely reversible. Finally, in contrast with the neutral dimer, at low denaturant concentration some aggregation of the acidic monomer, which vanishes before the unfolding transition, has been observed. 相似文献
15.
16.
17.
【目的】白蛾周氏啮小蜂为重大入侵害虫美国白蛾的主要天敌。本课题组前期通过转录组测序技术筛选出8个主要在白蛾周氏啮小蜂雌性触角中表达的气味结合蛋白OBPs。然而目前,对这些OBPs的具体结构和功能仍不清楚。因此,选取一个在雌性周氏啮小蜂触角特异表达的气味结合蛋白OBP1,通过分子对接技术模拟寄主挥发物与OBP1的结合情况。【方法】通过Swiss-Model对白蛾周氏啮小蜂气味结合蛋白CcOBP1进行同源建模,获得该蛋白的三维结构。从Pubchem下载γ-丁内酯、邻苯二甲酸二甲酯和萘等11种小分子的三维结构。用Schrodinger Suites 2015-2中的maestro10.2软件进行分子对接。【结果】在11种挥发物中,有3种与CcOBP1结合特性较好的小分子物质,分别是γ-丁内酯、邻苯二甲酸二甲酯和萘。【结论】白蛾周氏啮小蜂气味结合蛋白CcOBP1与γ-丁内酯、邻苯二甲酸二甲酯和萘结合特性较好,CcOBP1的功能可能与白蛾周氏啮小蜂的趋避效应相关,该结果初步探明了白蛾周氏啮小蜂OBP1的功能,可为白蛾周氏啮小蜂嗅觉分子机制的研究积累数据。 相似文献
18.
We have measured the effect of rat odorant-binding protein 1 on the rates of ligand uptake and liquid-to-air transfer rates with a set of defined odorous compounds. Comparison of observed rate constants (kobs) with data simulated over a wide range of different kinetic and thermodynamic regimes shows that the data do not agree with the previously held view of a slow off-rate regime (koff < 0.0004 s− 1). We propose that a rapid koff would be a necessary requirement for such a system, since slow odorant-release rates would result in significant decorrelation between the olfactory world and odour perception. 相似文献
19.
Patrick Ross Wilhelm Weihofen Fai Siu Amy Xie Hetal Katakia S. Kirk Wright Ian Hunt Richard K. Brown Ernesto Freire 《Analytical biochemistry》2015
The determination of accurate binding affinities is critical in drug discovery and development. Several techniques are available for characterizing the binding of small molecules to soluble proteins. The situation is different for integral membrane proteins. Isothermal chemical denaturation has been shown to be a valuable biophysical method to determine, in a direct and label-free fashion, the binding of ligands to soluble proteins. In this study, the application of isothermal chemical denaturation was applied to an integral membrane protein, the A2a G-protein coupled receptor. Binding affinities for a set of 19 small molecule agonists/antagonists of the A2a receptor were determined and found to be in agreement with data from surface plasmon resonance and radioligand binding assays previously reported in the literature. Therefore, isothermal chemical denaturation expands the available toolkit of biophysical techniques to characterize and study ligand binding to integral membrane proteins, specifically G-protein coupled receptors in vitro. 相似文献
20.
Mammals are able to perceive and differentiate a great number of structurally diverse odorants through the odorant's interaction with odorant receptors (ORs), proteins found within the cell membrane of olfactory sensory neurons. The natural gas industry has used human olfactory sensitivity to sulfur compounds (thiols, sulfides, etc.) to increase the safety of fuel gas transport, storage, and use through the odorization of this product. In the United States, mixtures of sulfur compounds are used, but the major constituent of odorant packages is 2-methylpropane-2-thiol, also known as tert-butyl mercaptan. It has been fundamentally challenging to understand olfaction and odorization due to the low affinity of odorous ligands to the ORs and the difficulty in expressing a sufficient number of OR proteins. Here, we directly observed the binding of tert-butyl mercaptan and another odiferous compound, cis-cyclooctene, to mouse OR MOR244-3 on living cells by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. This effort lays the groundwork for resolving molecular mechanisms responsible for ligand binding and resulting signaling, which in turn will lead to a clearer understanding of odorant recognition and competition. 相似文献