共查询到20条相似文献,搜索用时 0 毫秒
1.
The ligand profile for three odorant binding proteins (OBPs) of the rat have been determined using a large number of odorous compounds from different chemical classes. To evaluate the binding spectra of distinct subtypes, all OBPs were produces in Escherichia coli as recombinant His-tagged fusion proteins. The individual binding properties of each OBP subtype were analysed using a large array of organic compounds, representing derivatives of aliphatic and aromatic compounds, as well as terpenes, pyrazines and thiazoles, in a competitive spectroscopic binding assay with various fluorescence chromophores as the specific interacting partner for the OBPs. Most of the compounds were identified to interact only with one OBP subtype. But interestingly, a small change, for example in the 2-methyl or 2-ethoxy side chain in the pyrazine and thiazole derivatives to a 2-isobutyl group, caused overlapping binding affinities to rat-OBP1 and rat-OBP3. However, the data strongly support the notion that each OBP subtype displays a characteristic ligand binding profile and interacts with a different subset of exogenous organic compounds in a micromolar range. 相似文献
2.
Apparently homogeneous odorant binding protein purified from pig nasal mucosa (pOBP) exhibited subunit molecular masses of 17 223, 17 447, and 17 689 (major component) Da as estimated by ESI/MS. According to gel filtration, this protein, its truncated forms, and/or its variants are homodimeric under physiologic conditions (pH 6-7, 0.1 M NaCl). The dimer if monomer equilibrium shifts toward a prevalent monomeric form at pH <4.5. Velocity sedimentation reveals a monomeric state of OBP at both pH 7.2 and 3.5, indicating a pressure-induced dissociation of the homodimer. High-sensitivity differential scanning calorimetry (HS-DSC) shows that the unfolding transition of pOBP is reversible at neutral pH. It is characterized by the transition temperature of 69.23 degrees C and an enthalpy of 391.1 kJ/mol per monomer. The transition heat capacity curve of pOBP is well-approximated by the two-state model on the level of subunit, indicating that the two monomers behave independently. Isothermal titration calorimetry (ITC) shows that at physiological pH pOBP binds 2-isobutyl-3-methoxypyrazine (IBMP) and 3,7-dimethyloctan-1-ol (DMO) with association constants of 3.19 x 10(6) and 4.94 x 10(6) M(-)(1) and enthalpies of -97.2 and -87.8 kJ/mol, respectively. The binding stoichiometry of both ligands is nearly one molecule of ligand per homodimer of pOBP. The interaction of pOBP with both ligands is enthalpically driven with an unfavorable change of entropy. The binding affinity of pOBP with IBMP does not change significantly at acidic pH, while the binding stoichiometry is nearly halved. According to HS-DSC data, the interaction with IBMP and DMO leads to a substantial stabilization of the pOBP folded structure, which is manifested by the increase in the unfolding temperature and enthalpy. The calorimetric data allow us to conclude that the mechanism of binding of the studied odorants to pOBP is not dominated by a hydrophobic effect related to any change in the hydration state of protein and ligand groups but, most likely, is driven by polar and van der Waals interactions. 相似文献
3.
4.
Ramoni R Spinelli S Grolli S Conti V Merli E Cambillau C Tegoni M 《Biochimica et biophysica acta》2008,1784(4):651-657
The X-ray structure of bovine Odorant Binding Protein (bOBP) revealed its association as a domain swapped dimer. bOBP, devoid of any cysteines, contrasts with other mammalian OBPs, which are monomeric and possess at least one disulfide bridge. We have produced a mutant of bOBP in which a glycine residue was inserted after position 121. This mutation yielded a monomeric bOBP-121Gly+ in which domain swapping has been reverted. Here, we have subsequently introduced two mutations, Trp64Cys and His155Cys, in view to stabilize the putative monomer with a disulfide bridge. We have determined the crystal structure of this triple mutant at 1.65 A resolution. The mutant protein is monomeric, stabilized by a disulfide bridge between Trp64Cys and His155Cys, with a backbone superimposable to that of native bOBP, with the exception of the hinge and of the 10 residues at the C-terminus. bOBP triple mutant binds 1-amino-anthracene, 1-octen-3-ol (bOBP co-purified ligand) and other ligands with microM Kd values comparable to those of the swapped dimer. 相似文献
5.
Andreas Schwaighofer Maria Pechlaner Chris Oostenbrink Caroline Kotlowski Can Araman Rosa Mastrogiacomo Paolo Pelosi Wolfgang Knoll Christoph Nowak Melanie Larisika 《Biochemical and biophysical research communications》2014
Molecular interactions between odorants and odorant binding proteins (OBPs) are of major importance for understanding the principles of selectivity of OBPs towards the wide range of semiochemicals. It is largely unknown on a structural basis, how an OBP binds and discriminates between odorant molecules. Here we examine this aspect in greater detail by comparing the C-minus OBP14 of the honey bee (Apis mellifera L.) to a mutant form of the protein that comprises the third disulfide bond lacking in C-minus OBPs. Affinities of structurally analogous odorants featuring an aromatic phenol group with different side chains were assessed based on changes of the thermal stability of the protein upon odorant binding monitored by circular dichroism spectroscopy. Our results indicate a tendency that odorants show higher affinity to the wild-type OBP suggesting that the introduced rigidity in the mutant protein has a negative effect on odorant binding. Furthermore, we show that OBP14 stability is very sensitive to the position and type of functional groups in the odorant. 相似文献
6.
7.
Florence Vincent Roberto Ramoni Silvia Spinelli Stefano Grolli Mariella Tegoni Christian Cambillau 《European journal of biochemistry》2004,271(19):3832-3842
The structure of bovine odorant-binding protein (bOBP) revealed a striking feature of a dimer formed by domain swapping [Tegoni, M., Ramoni, R., Bignetti, E., Spinelli, S. & Cambillau, C. (1996) Nat. Struct. Biol.3, 863-867; Bianchet, M.A., Bains, G., Pelosi, P., Pevsner, J., Snyder, S.H., Monaco, H.L. & Amzel, L.M. (1996) Nat. Struct. Biol.3, 934-939] and the presence of a naturally occuring ligand [Ramoni, R., Vincent, F., Grolli, S., Conti, V., Malosse, C., Boyer, F.D., Nagnan-Le Meillour, P., Spinelli, S., Cambillau, C. & Tegoni, M. (2001) J. Biol. Chem.276, 7150-7155]. These features led us to investigate the binding of odorant molecules with bOBP in solution and in the crystal. The behavior of odorant molecules in bOBP resembles that observed with porcine OBP (pOBP), although the latter is monomeric and devoid of ligand when purified. The odorant molecules presented K(d) values with bOBP in the micromolar range. Most of the X-ray structures revealed that odorant molecules interact with a common set of residues forming the cavity wall and do not exhibit specific interactions. Depending on the ligand and on the monomer (A or B), a single residue--Phe89--presents alternate conformations and might control cross-talking between the subunits. Crystal data on both pOBP and bOBP, in contrast with binding and spectroscopic studies on rat OBP in solution, reveal an absence of significant conformational changes involving protein loops or backbone. Thus, the role of OBP in signal triggering remains unresolved. 相似文献
8.
Unfolding and refolding of porcine odorant binding protein in guanidinium hydrochloride: equilibrium studies at neutral pH 总被引:1,自引:0,他引:1
Parisi M Mazzini A Sorbi RT Ramoni R Grolli S Favilla R 《Biochimica et biophysica acta》2003,1652(2):115-125
Unfolding and refolding studies on porcine odorant binding protein (pOBP) have been performed at pH 7 in the presence of guanidinium hydrochloride (GdnHCl). Unfolding, monitored by following changes of protein fluorescence and circular dichroism (CD), was found to be a reversible process, in terms of recovered structure and function. The equilibrium transition data were fitted by a simple two-state sigmoidal function of denaturant concentration and the thermodynamic folding parameters, derived from the two techniques, were very similar (average values: C(1/2) approximately 2.4 M, m approximately 2 kcal mol(-1) M(-1), DeltaG(unf,w)(0) approximately 4.7 kcal mol(-1)). The transition was independent of protein concentration, indicating that only monomeric species are involved. Only a minor protective effect by the fluorescent ligand 1-amino-anthracene (AMA) against protein unfolding was detected, whereas dihydromyrcenol (DHM) stabilised the protein to a larger extent (DeltaC(1/2) approximately 0.5 M). Refolding was complete, when the protein, denatured with GdnHCl, was diluted with buffer. On the other hand, refolding by dialysis was largely prevented by concomitant aggregation. The present results on pOBP are compared with those on bovine OBP (bOBP) [Biochim. Biophys. Acta 1599 (2002) 90], where subunit folding is accompanied by domain swapping. We finally suggest that the generally observed two-state folding of many lipocalins is probably favoured by their beta-barrel topology. 相似文献
9.
10.
Vertebrate opsins are classified into one of five classes on the basis of amino acid similarity. These classes are short wavelength sensitive 1 and 2 (SWS1, SWS2), medium/long wavelength sensitive (M/LWS), and rod opsin like 1 and 2 (RH1, RH2). In bovine rod opsin (RH1), two critical amino acids form a salt bridge in the apoprotein that maintains the opsin in an inactive state. These residues are K296, which functions as the chromophore binding site, and E113, which functions as the counterion to the protonated Schiff base. Corresponding residues in each of the other vertebrate opsin classes are believed to play similar roles. Previous reports have demonstrated that mutations in these critical residues result in constitutive activation of transducin by RH1 class opsins in the absence of chromophore. Additionally, recent reports have shown that an E113Q mutation in SWS1 opsin is constitutively active. Here we ask if the other classes of vertebrate opsins maintain activation characteristics similar to that of bovine RH1 opsin. We approach this question by making the corresponding substitutions which disrupt the K296/E113 salt bridge in opsins belonging to the other vertebrate opsin classes. The mutant opsins are tested for their ability to constitutively activate bovine transducin. We demonstrate that mutations disrupting this key salt bridge produce constitutive activation in all classes. However, the mutant opsins differ in their ability to be quenched in the dark state by the addition of chromophore as well as in their level of constitutive activation. The differences in constitutive activation profiles suggest that structural differences exist among the opsin classes that may translate into a difference in activation properties. 相似文献
11.
12.
Dissociation of bovine odorant binding protein (bOBP) dimers to monomers at pH 2.5 has been confirmed through size exclusion chromatography experiments. Moreover, structural and binding properties of the acidic monomer and neutral dimer have been compared using a combination of experimental (circular dichroism and fluorescence) and computational (molecular dynamics) techniques. The secondary and tertiary structures of bOBP are largely maintained at acidic pH, but molecular dynamics simulations suggest the loop regions (N-terminal residues, Omega-loop and C-terminal segments) are more relaxed and Phe36 and Tyr83 residues are involved in the regulation of the binding cavity entrance. The formation of a molten globule state at acidic pH, suggested by the strong enhancement of fluorescence of 8-anilino-1-naphtalenesulphonic acid (ANS), is not confirmed by any significant change in the near UV circular dichroism spectrum. Functionality measurements, deduced from the interaction of bOBP with 1-amino-anthracene (AMA), show that the binding capacity of the protein at acidic pH is preserved, though slightly looser than at neutral pH. Unfolding of acidic bOBP, induced by guanidinium chloride (GdnHCl), was investigated by means of CD spectroscopy, steady state fluorescence, fluorescence anisotropy and light scattering. The stability of the acidic monomer is lower than that of the neutral dimer, owing to the loss of the swapping interactions, but renaturation is completely reversible. Finally, in contrast with the neutral dimer, at low denaturant concentration some aggregation of the acidic monomer, which vanishes before the unfolding transition, has been observed. 相似文献
13.
We have measured the effect of rat odorant-binding protein 1 on the rates of ligand uptake and liquid-to-air transfer rates with a set of defined odorous compounds. Comparison of observed rate constants (kobs) with data simulated over a wide range of different kinetic and thermodynamic regimes shows that the data do not agree with the previously held view of a slow off-rate regime (koff < 0.0004 s− 1). We propose that a rapid koff would be a necessary requirement for such a system, since slow odorant-release rates would result in significant decorrelation between the olfactory world and odour perception. 相似文献
14.
Gabrielle Deschamps-Francoeur Daniel Garneau Fabien Dupuis-Sandoval Audrey Roy Marie Frappier Mathieu Catala Sonia Couture Mélissa Barbe-Marcoux Sherif Abou-Elela Michelle S. Scott 《Nucleic acids research》2014,42(15):10073-10085
Small nucleolar RNAs (snoRNAs) are among the first discovered and most extensively studied group of small non-coding RNA. However, most studies focused on a small subset of snoRNAs that guide the modification of ribosomal RNA. In this study, we annotated the expression pattern of all box C/D snoRNAs in normal and cancer cell lines independent of their functions. The results indicate that C/D snoRNAs are expressed as two distinct forms differing in their ends with respect to boxes C and D and in their terminal stem length. Both forms are overexpressed in cancer cell lines but display a conserved end distribution. Surprisingly, the long forms are more dependent than the short forms on the expression of the core snoRNP protein NOP58, thought to be essential for C/D snoRNA production. In contrast, a subset of short forms are dependent on the splicing factor RBFOX2. Analysis of the potential secondary structure of both forms indicates that the k-turn motif required for binding of NOP58 is less stable in short forms which are thus less likely to mature into a canonical snoRNP. Taken together the data suggest that C/D snoRNAs are divided into at least two groups with distinct maturation and functional preferences. 相似文献
15.
Patrick Ross Wilhelm Weihofen Fai Siu Amy Xie Hetal Katakia S. Kirk Wright Ian Hunt Richard K. Brown Ernesto Freire 《Analytical biochemistry》2015
The determination of accurate binding affinities is critical in drug discovery and development. Several techniques are available for characterizing the binding of small molecules to soluble proteins. The situation is different for integral membrane proteins. Isothermal chemical denaturation has been shown to be a valuable biophysical method to determine, in a direct and label-free fashion, the binding of ligands to soluble proteins. In this study, the application of isothermal chemical denaturation was applied to an integral membrane protein, the A2a G-protein coupled receptor. Binding affinities for a set of 19 small molecule agonists/antagonists of the A2a receptor were determined and found to be in agreement with data from surface plasmon resonance and radioligand binding assays previously reported in the literature. Therefore, isothermal chemical denaturation expands the available toolkit of biophysical techniques to characterize and study ligand binding to integral membrane proteins, specifically G-protein coupled receptors in vitro. 相似文献
16.
Mammals are able to perceive and differentiate a great number of structurally diverse odorants through the odorant's interaction with odorant receptors (ORs), proteins found within the cell membrane of olfactory sensory neurons. The natural gas industry has used human olfactory sensitivity to sulfur compounds (thiols, sulfides, etc.) to increase the safety of fuel gas transport, storage, and use through the odorization of this product. In the United States, mixtures of sulfur compounds are used, but the major constituent of odorant packages is 2-methylpropane-2-thiol, also known as tert-butyl mercaptan. It has been fundamentally challenging to understand olfaction and odorization due to the low affinity of odorous ligands to the ORs and the difficulty in expressing a sufficient number of OR proteins. Here, we directly observed the binding of tert-butyl mercaptan and another odiferous compound, cis-cyclooctene, to mouse OR MOR244-3 on living cells by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. This effort lays the groundwork for resolving molecular mechanisms responsible for ligand binding and resulting signaling, which in turn will lead to a clearer understanding of odorant recognition and competition. 相似文献
17.
Humans are able to detect and discriminate myriads of odorants using only several hundred olfactory receptors (ORs) classified in two major phylogenetic classes representing ORs from aquatic (class I) and terrestrial animals (class II). Olfactory perception results in a combinatorial code, in which one OR recognizes multiple odorants and different odorants are recognized by different combinations of ORs. Moreover, recent data suggest that odorants could also behave as antagonists for other ORs, thus making the combinatorial coding more complex. Here we describe the odorant repertoires of two human ORs belonging to class I and class II, respectively. For this purpose, we set up an assay based on calcium imaging in which 100 odorants were screened using air-phase odorant stimulation at physiological doses. We showed that the human class I OR52D1 is functional, exhibiting a narrow repertoire related to that of its orthologous murine OR, demonstrating than this human class I OR is not an evolutionary relic. The class II OR1G1 was revealed to be broadly tuned towards odorants of 9-10 carbon chain length, with diverse functional groups. The existence of antagonist odorants for the class II OR was also demonstrated. They are structurally related to the agonists, with shorter carbon chain length. 相似文献
18.
利用RACE技术,首次从丽蝇蛹集金小蜂Nasonia vitripennis中克隆获得一个气味结合蛋白全长cDNA序列.该基因全长553 bp,开放阅读框411 bp,3'和5'端非编码序列分别为13 bp和129 bp.其推导的氨基酸序列编码136个氨基酸,推测编码蛋白质的分子量为15.4 kDa,等电点为8.76.同源性比对分析发现,丽蝇蛹集金小蜂气味结合蛋白基因与现已报道的其它昆虫气味结合蛋白基因在氨基酸水平上的相似性均低于30%,拥有6个保守半胱氨酸位点等气味结合蛋白所具有的典型特征.系统进化树分析表明,丽蝇蛹集金小蜂气味结合蛋白与意大利蜜蜂Apis mellifera气味结合蛋白2,3,4,5,6,7,8和12聚为同一族,与意大利蜜蜂气味结合蛋白5,6和8的进化程度最近.RT-PCR分析表明,丽蝇蛹集金小蜂气味结合蛋白基因不仅在雌、雄成虫触角中高度表达,而且在头部和足中有微弱表达. 相似文献
19.
Odorant perturbation of Na+-K+ ATPase activity from cow olfactorytissue was strongly affected by ng quantities of antibodiesto anisole binding protein from dog olfactory mucosa. Antibodyprotein (80 ng per ml reaction mixture) prevented odorant perturbationof Na+-K+ ATPase activity. Antibody effect on odorant perturbationshowed concentration dependence and was active against a numberof different odorous chemicals. Electrophysiological studies(Goldberg et al, 1979) showed that mouse EOG responses due toodorants were inhibited 50% by previous exposure to 0.8 ng antibodies.Thus electrophysiological and biochemical responses showed sensitivityto the antibodies from the anisole binding protein from dogolfactory tissue. It is proposed that NA+-K+ ATPase may participatein the initiation of nerve signals caused by odorant-enzymecomplex interactions. 相似文献
20.
Quan-Yong Jiang Wei-Xuan Wang Ziding Zhang Long Zhang 《Insect biochemistry and molecular biology》2009,39(7):440-447
Odorant binding proteins (OBPs) are required for olfaction perception, and thus may be possible targets for controlling the population of pests by interfering with their chemical communication. A single OBP LmigOBP1 has been identified in the antennae of Locusta migratoria, though four isoforms have been detected. Here, we have investigated the ligand-binding specificity of LmigOBP1 using 67 volatile odor compounds. Fluorescence assays indicate that LmigOBP1 does not bind fecal volatiles or green leaf odors, but shows high affinity for some linear aliphatic compounds, with pentadecanol and 2-pentadecanone being the strongest binding ligands. A 3-dimensional (3D) model of LmigOBP1 was built by homology modeling. Docking simulations based on this model suggested that Asn74 of LmigOBP1 is a key binding site, and this was validated by site-directed mutagenesis and fluorescence assays. We suggest that, as a general rule, a hydrophilic amino acid at the entrance of the binding cavity participates in initial recognition of ligands, and contributes to ligand-binding specificity of OBPs. 相似文献