首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The localization of constitutive proteins of different types of cytoskeletal components (prekeratin, vimentin, and actin) was examined in embryonic mouse molars using specific antibodies and immunofluorescence microscopy on frozen sections. Prekeratin and actin were found in the enamel organ. Preameloblasts demonstrated uniform staining, whereas ameloblasts demonstrated an apical accumulation of both prekeratin and actin. Vimentin and actin were observed in the dental papilla. A redistribution of vimentin accompanied the polarization of odontoblasts. A possible transmembranous control of cytoskeletal activities by the extracellular matrix is discussed.  相似文献   

2.
Indirect immunofluorescence microscopy has been used to detect cytoskeletal proteins, which allow a distinction between the two cell types present in the mouse blastocyst: i.e. the cells of the inner cell mass (ICM) and the outer trophoblastic cells. Antibodies against three classes of intermediate-sized filaments (cytokeratins, desmin and vimentin), as well as antibodies against actin and tubulin were studied. Antibodies against prekeratin stain the outer trophoblastic cells but not the ICM in agreement with the findings on adult tissues that cytokeratins are a marker for various epithelial cells. Interestingly, vimentin filaments typical of mesenchymal cells as well as of cells growing in culture seem to be absent in both cell types of the blastocyst. Thus, the cytokeratins of the trophoblastic cells seem to be the first intermediate-sized filaments expressed in embryogenesis. Antibodies to tubulin and actin show that microtubules and microfilaments are ubiquitous structures, although microfilaments have a noticeably different organization in the two cell types. In addition, since early embryogenic multipotential cells show close similarities to teratocarcinomic cells, a comparison is made between the cells of the blastocyst, embryonal carcinoma cells (EC cells) and an epithelial endodermal cell line (PYS2 cells) derived from EC cells. EC cells display vimentin filaments whereas PYS2 cells show both vimentin and cytokeratin filaments. The results emphasize the usefulness of antibodies specific for different classes of intermediate filaments in further embryological studies, and suggest that cells of the blastocyst and EC cells differ with respect to vimentin filaments.  相似文献   

3.
We investigated the involvement of caveolin-1 and the cytoskeletal proteins, actin and vimentin, in the adipogenesis of bovine intramuscular preadipocyte (BIP) cells. Immunoblot analysis demonstrated that levels of caveolin-1 and actin gradually increased during adipose conversion in BIP cells, whereas a slight decrease was observed for vimentin. We found that part of the vimentin was clearly distributed to caveolin-1-enriched membrane fractions in BIP cells, but actin was not. During adipogenesis of BIP cells, treatment with the tubulin depolymerizer, nocodazole, significantly increased intracellular triglyceride accumulation compared to non-treated cells. Immunocytochemical analysis showed that actin microfilaments were significantly disrupted in nocodazole-treated cells. Also, a decrease in the localization of vimentin in caveolin-1-enriched fractions and a failure of vimentin to co-immunoisolate with caveolin-1 were observed in nocodazole-treated cells. These results suggest that a rearrangement of cytoskeletal proteins has a role in the intracellular accumulation of lipid droplets during adipogenesis of BIP cells.  相似文献   

4.
5.
Antibodies to different intermediate filament proteins can be used to distinguish cells of epithelial, mesenchymal, muscle, glial and neuronal origin. Antibodies to prekeratin which characterize cells of epithelial origin, and antibodies to vimentin which recognize cells of mesenchymal origin have been used to study twenty cases of breast carcinoma (sixteen infiltrating ductal carcinomas and four infiltrating intraductal carcinomas), two cases of cystic breast disease, two fibroadenomas and one case of benign cystosarcoma phylloides. The prekeratin and vimentin were detected using specific antibodies to these proteins by immunofluorescence microscopy using alcohol fixed paraffin-embedded tissues. In eighteen out of the twenty carcinomas the tumor cells were strongly and specifically stained by antibodies to prekeratin. DIfferent tumors gave different patterns of prekeratin staining. In contrast, when the same specimens were tested with the vimentin antibody, the tumor cells were unstained, and instead only the usual strong staining to fibroblasts and blood vessels in the stroma was observed. In cystic breast disease, fibroadenomas, and benign cystosarcoma phylloides, cells of epithelial origin were strongly stained by the prekeratin but not by the vimentin antibody.  相似文献   

6.
Proteins of contractile and cytoskeletal elements have been studied in bovine lens-forming cells growing in culture as well as in bovine and murine lenses grown in situ by immunofluorescence microscopy using antibodies to the following proteins: actin, myosin, tropomyosin, α-actinin, tubulin, prekeratin, vimentin, and desmin. Lens-forming cells contain actin, myosin, tropomyosin, and α-actinin which in cells grown in culture are enriched in typical cable-like structures, i.e. microfilament bundles. Antibodies to tubulin stain normal, predominantly radial arrays of microtubules. In the epithelioid lens-forming cells of both monolayer cultures grown in vitro and lens tissue grown in situ intermediate-sized filaments of the vimentin type are abundant, whereas filaments containing prekeratin-like proteins (‘cytokeratins’) and desmin filaments have not been found. The absence of cytokeratin proteins observed by immunological methods is supported by gel electrophoretic analyses of cytoskeletal proteins, which show the prominence of vimentin and the absence of detectable amounts of cytokeratins and desmin. This also correlates with electron microscopic observations that typical desmosomes and tonofilament bundles are absent in lens-forming cells, as opposed to a high density of vimentin filaments. Our observations show that the epithelioid lens-forming cells have normal arrays of (i) microfilament bundles containing proteins of contractile structures; (ii) microtubules; and (iii) vimentin filaments, but differ from most true epithelial cells by the absence of cytokeratins, tonofilaments and typical desmosomes. The question of their relationship to other epithelial tissues is discussed in relation to lens differentiation during embryogenesis. We conclude that the lens-forming cells either represent an example of cell differentiation of non-epithelial cells to epithelioid morphology, or represent a special pathway of epithelial differentiation characterized by the absence of cytokeratin filaments and desmosomes. Thus two classes of tissue with epithelia-like morphology can be distinguished: those epithelia which contain desmosomes and cytokeratin filaments and those epithelioid tissues which do not contain these structures but are rich in vimentin filaments (lens cells, germ epithelium of testis, endothelium).  相似文献   

7.
Recombinant plasmids were made containing cDNAs synthesized on hamster mRNAs coding for cytoskeletal (beta- or gamma-) actins and for vimentin. Hybridization of the actin probe on restriction digests of one avian and five mammalian DNAs yielded multiple bands; the vimentin probe revealed only one band (accompanied by 2-3 faint bands in some DNAs). The results obtained with the vimentin probe indicate that the corresponding coding sequences: (a) are highly conserved in warm-blooded vertebrates like the actin sequences; (b) have strongly diverged from those coding for other intermediate filament proteins, since hybridization of the vimentin probe does not lead to a diagnostic multiband pattern; and (c) most likely contribute to single gene, in contrast to the sequences coding for other cytoskeletal proteins. Hybridization of the probes on mRNAs from the different sources used showed that the non-coding sequences of both vimentin and actin genes are conserved in length.  相似文献   

8.
The Gram-positive bacterial pathogen Streptococcus pyogenes produces a C3 family ADP-ribosyltransferase designated SpyA (S. pyogenes ADP-ribosyltransferase). Our laboratory has identified a number of eukaryotic protein targets for SpyA, prominent among which are the cytoskeletal proteins actin and vimentin. Because vimentin is an unusual target for modification by bacterial ADP-ribosyltransferases, we quantitatively compared the activity of SpyA on vimentin and actin. Vimentin was the preferred substrate for SpyA (k(cat), 58.5 ± 3.4 min(-1)) relative to actin (k(cat), 10.1 ± 0.6 min(-1)), and vimentin was modified at a rate 9.48 ± 1.95-fold greater than actin. We employed tandem mass spectrometry analysis to identify sites of ADP-ribosylation on vimentin. The primary sites of modification were Arg-44 and -49 in the head domain, with several additional secondary sites identified. Because the primary sites are located in a domain of vimentin known to be important for the regulation of polymerization by phosphorylation, we investigated the effects of SpyA activity on vimentin polymerization, utilizing an in vitro NaCl-induced filamentation assay. SpyA inhibited vimentin filamentation, whereas a catalytic site mutant of SpyA had no effect. Additionally, we demonstrated that expression of SpyA in HeLa cells resulted in collapse of the vimentin cytoskeleton, whereas expression in RAW 264.7 cells impeded vimentin reorganization upon stimulation of this macrophage-like cell line with LPS. We conclude that SpyA modification of vimentin occurs in an important regulatory region of the head domain and has significant functional effects on vimentin assembly.  相似文献   

9.
The assembly and organization of the three major eukaryotic cytoskeleton proteins, actin, microtubules, and intermediate filaments, are highly interdependent. Through evolution, cells have developed specialized multifunctional proteins that mediate the cross-linking of these cytoskeleton filament networks. Here we test the hypothesis that two of these filamentous proteins, F-actin and vimentin filament, can interact directly, i.e. in the absence of auxiliary proteins. Through quantitative rheological studies, we find that a mixture of vimentin/actin filament network features a significantly higher stiffness than that of networks containing only actin filaments or only vimentin filaments. Maximum inter-filament interaction occurs at a vimentin/actin molar ratio of 3 to 1. Mixed networks of actin and tailless vimentin filaments show low mechanical stiffness and much weaker inter-filament interactions. Together with the fact that cells featuring prominent vimentin and actin networks are much stiffer than their counterparts lacking an organized actin or vimentin network, these results suggest that actin and vimentin filaments can interact directly through the tail domain of vimentin and that these inter-filament interactions may contribute to the overall mechanical integrity of cells and mediate cytoskeletal cross-talk.  相似文献   

10.
Frozen or paraffin-embedded human and rat lung specimens were stained with antibodies against total actin, alpha-smooth muscle (SM) actin, vimentin, desmin, or gelsolin. Alveolar interstitial myofibroblasts [i.e., contractile interstitial cells (CIC)] were labeled by total actin antibody but not by alpha-SM actin antibody. They stained for vimentin and gelsolin and, in rat lungs, most of them for desmin. Pericytes located around venules at the junction of three alveolar septa were always positive for alpha-SM actin and never for desmin. Tissue samples were also immunostained by an alpha-SM actin antibody and studied by electron microscopy. With this technique we confirmed that cells, identified as pericytes on the basis of their location, were intensely labeled by alpha-SM actin antibodies, whereas alveolar myofibroblasts were not. We conclude that in the lung interstitium pericytes and alveolar myofibroblasts have distinct cytoskeletal features, alpha-SM actin antibody staining being a simple method to distinguish between them. Furthermore, it appears that alveolar myofibroblasts have a peculiar pattern of cytoskeletal protein composition which, in the rat, is similar to that previously described for stromal cells in uterine submucosa, liver sinusoids (Ito cells), or the core of intestinal villi.  相似文献   

11.
The formation of extensions in cell migration requires tightly coordinated reorganization of all three cytoskeletal polymers but the mechanisms by which intermediate filament networks interact with actin to generate extensions are not well-defined. We examined interactions of the actin binding protein filamin A (FLNA) with vimentin in extension formation by fibroblasts. Knockdown (KD) of vimentin in fibroblasts reduced the lengths of cell extensions by 50% (p < 0.001). After cell binding to fibronectin, there was a time-dependent increase of phosphorylation of serine 39, 56 and 72 in vimentin, which was associated with vimentin filament assembly. Of the FLNA-interacting kinases that could phosphorylate vimentin, we focused on PAK1, which we found by reciprocal immunoprecipitation associated with FLNA. Enzyme inhibitor studies and siRNA KD demonstrated that PAK1 was required for vimentin phosphorylation and formation of cell extensions. In sedimentation assays, vimentin was exclusively detected in the insoluble pellet fraction of cells expressing FLNA while in FLNA KD cells there was increased vimentin in the supernatants of FLN KD cells. Compared with wild type, FLNA KD cells showed loss of phosphorylation of serine 56 and 72 in vimentin and reduced numbers and lengths of cell extensions by >4-fold. We suggest that the association of PAK1 with FLNA enables vimentin phosphorylation and filament assembly, which are important in the development and stabilization of cell extensions during cell migration.  相似文献   

12.
Synthesis and Turnover of Cytoskeletal Proteins in Cultured Astrocytes   总被引:17,自引:10,他引:7  
Abstract: We previously reported that the cytoskeleton of rat astrocytes in primary culture contains vimentin, glial fibrillary acidic protein (GFAP), and actin. These proteins were found in a fraction insoluble in Triton X-100 and thought to be assembled in filamentous structures. We now used primary astrocyte cultures to study the kinetics of synthesis and turnover of these cytoskeletal proteins. The intermediate filament proteins were among the most actively synthesized by astrocytes. High levels of synthesis were detectable by the third day of culture in the early log phase of growth, and the pattern of labeling at day 3 was similar to that at 14 days when the cultures had reached confluency. In short-term incorporation experiments vimentin, GFAP, and actin in the Triton-insoluble fraction were labeled within 5 min after exposure of the cultures to radioactive leucine. We did not detect any saturation of labeling for up to 6 h of incubation. The turnover of filament proteins studied by following the decay of radioactivity from prelabeled vimentin, GFAP, and cytoskeletal actin displayed biphasic decay kinetics for all three proteins. In the initial phase a fast-decaying pool with a half-life of 12–18 h contributed about 40% of the total activity in each protein. A major portion, about 60%, of each protein, however, decayed much more slowly, exhibiting a half-life of about 8 days.  相似文献   

13.
Fluorescent dyes were used to stain actin, vimentin, tubulin and DNA in the same MRC-5 fibroblastic cells. Cytofluorometry and image analysis were then used to quantitatively evaluate the F actin, vimentin and tubulin content throughout the cell cycle. The results showed that different cells can have the same DNA content while their cytoskeletal protein content is variable. The data also showed that cytoskeletal protein content variations exist throughout the cell cycle of the fibroblastic cell line. The F actin content increased during the cell cycle from G1 to G2 phases and decreased in M phase. The amount of tubulin in the G2 was about twice as much as that in the G1 phase, before decreasing in the M phase; there was a threshold of tubulin content for G2 cells entering S phase.  相似文献   

14.
The intracellular pattern of prekeratin and actin filaments has been studied on sections of mouse livers regenerating after CCl4 injury. Monoclonal antibodies against one of liver prekeratins and monospecific polyclonal actin antibodies were used in the indirect immunofluorescent test. The presence of alpha-fetoprotein and bile canaliculi antigen was also monitored during regeneration. In control livers, prekeratin and actin filaments formed thick bundles adjacent to plasma membranes. The cytoplasmic prekeratin network was unmarked. In contrast to the latter, the bright well developed intracytoplasmic prekeratin network and intracytoplasmic actin fibers were identified in the perinecrotic hepatocytes by the 3d-4th day of regeneration. This rearrangement of the cytoskeleton coincided in time with the appearance of alpha-fetoprotein and the loss of the bile canaliculi antigen in the perinecrotic hepatocytes.  相似文献   

15.
Previous studies have indicated that the effects of parathyroid hormone (PTH) on osteoblastic function involve alteration of cytoskeletal assembly. We have reported that after a transitory cell retraction, PTH induces respreading with stimulation of actin, vimentin and tubulins synthesis in mouse bone cells and that this effect is not mediated by cAMP. In order to further elucidate the role of intracellular cAMP and calcium on PTH action on bone cell shape and cytoskeleton we have compared the effects of calcium- and cAMP-enhancing factors on actin, tubulin and vimentin synthesis in relation with mouse bone cell morphology, DNA synthesis and alkaline phosphatase activity as a marker of differentiation. Confluent mouse osteoblastic cells were treated with 0.1 mM isobutylmethylxanthine (IBMX) for 24 h. This treatment caused an increase in the levels of cytoskeletal subunits associated with an elevation of cAMP. Under these conditions, PTH (20 nM) and forskolin (0.1 microM) produced persistent cytoplasmic retraction. PTH and forskolin treatment in presence of IBMX (24 h) induced inhibitory effects on actin and tubulin synthesis evaluated by [35S]methionine incorporation into cytoskeletal proteins identified on two-dimensional gel electrophoresis. Under these culture conditions PTH and forskolin also caused disassembly of microfilament and microtubules as shown by the marked reduction in Triton X soluble-actin and alpha- and beta-tubulins. In contrast, incubation of mouse bone cells with 1 microM calcium ionophore A23187 (24 h) resulted in increased monomeric and polymeric forms of actin and tubulin while not affecting intracellular cAMP. Alkaline phosphatase activity was increased in all conditions while DNA synthesis evaluated by [3H]thymidine incorporation into DNA was stimulated by PTH combined with forskolin and inhibited by the calcium ionophore. These data indicate that persistent elevation of cAMP levels induced by PTH and forskolin with IBMX cause cell retraction with actin and tubulin disassembly whereas rising cell calcium induces cytoskeletal protein assembly and synthesis in mouse osteoblasts. The results point to a distinct involvement of calcium and cAMP in both cytoskeletal assembly and DNA synthesis in mouse bone cells.  相似文献   

16.
This study reports the cytoskeletal organisation within chondrocytes, isolated from the superficial and deep zones of articular cartilage and seeded into agarose constructs. At day 0, marked organisation of actin microfilaments was not observed in cells from both zones. Partial or clearly organised microtubules and vimentin intermediate filaments cytoskeletal components were present, however, in a proportion of cells. Staining for microtubules and vimentin intermediate filaments was less marked after 1 day in culture however than on initial seeding. For all three cytoskeletal components there was a dramatic increase in organisation between days 3 and 14 and, in general, organisation was greater within deep zone cells. Clear organisation for actin microfilaments was characterised by a cortical network and punctate staining around the periphery of the cell, while microtubules and vimentin intermediate filaments formed an extensive fibrous network. Cytoskeletal organisation within chondrocytes in agarose appears, therefore, to be broadly similar to that described in situ. Variations in the organisation of actin microfilaments between chondrocytes cultured in agarose and in monolayer are consistent with a role in phenotypic modulation. Vimentin intermediate filaments and microtubules form a link between the plasma membrane and the nucleus and may play a role in the mechanotransduction process.  相似文献   

17.
Cytoskeletal proteins are major components of the cell backbone and regulate cell shape and function. The purpose of this study was to investigate the effect of lipopolysaccharide (LPS) on the dynamics and organization of the cytoskeletal proteins, actin, vimentin, tubulin and vinculin in human small intestinal lamina propria fibroblasts (HSILPF). A noticeable change in the actin architecture was observed after 30 min incubation with LPS with the formation of orthogonal fibers and further accumulation of actin filament at the cell periphery by 2 h. Reorganization of the vimentin network into vimentin bundling was conspicuous at 2 h. With further increase in the time period of LPS exposure, diffused staining of vimentin along with vimentin bundling was observed. Vinculin plaques distributed in the cell body and cell periphery in the control cells rearrange to cell periphery in LPS-treated cells by 30 min of LPS exposure. However, there was no change in the tubulin architecture in HSILPF in response to LPS. LPS increased the F-actin pool in HSILPF in a concentration-dependent manner with no difference in the level of G-actin. A time-dependent study depicted an increase in the G-actin pool at 10 and 20 min of LPS exposure followed by a decrease at further time intervals. The F-actin pool in LPS-treated cells was lower than the control levels at 10 and 20 min of LPS exposure followed by a sharp increase until 120 min and finally returning to the basal level at 140 and 160 min. Further (35)S-methionine incorporation studies suggested a new pool of actin synthesis, whereas the synthesis of other cytoskeletal filaments was not altered. Cytochalasin B, an actin-disrupting agent, severely affected the LPS induced increased percentage of 'S' phase cells and IL-6 synthesis in HSILPF. We conclude that dynamic and orchestrated organization of the cytoskeletal filaments and actin assembly in response to LPS may be a prime requirement for the LPS induced increase in percentage of 'S' phase cells and IL-6 synthesis  相似文献   

18.
The role of microtubules and intermediate filaments in control of cell shape of cultured cells of hepatomas McA-RH-7777 and 27 was investigated. Indirect immunofluorescence with specific polyclonal antibodies against tubulin and monoclonal antibodies against prekeratin with molecular weight 49 kD and vimentin was used. Incubation of cells in colcemid, resulting in specific distribution of microtubules did not change either prekeratin or vimentin distribution in cells of both the hepatomas, but reversed polarization of elongated McA-RH-7777 cells. These data suggest that the effect of disruption of microtubular system on the cell shape is not mediated by alterations of intermediate filaments.  相似文献   

19.
Summary Antibodies against intermediate-sized filaments, of the prekeratin or vimentin type, were used to investigate the presence of these filaments by indirect immunofluorescence microscopy in cultured and non-cultured amniotic fluid cells, in frozen sections of the placenta and in isolated cells of the amniotic epithelium. Two major classes of cells can be cultured from amniotic fluids, namely cells of epithelial origin containing filaments of the prekeratin type and cells of different origin which contain filaments of the vimentin type but are negative when tested with antibodies to epidermal prekeratin. The presence of prekeratin type filaments correlates with the morphology of colonies of amniotic fluid cell cultures in vitro as classified by Hoehn et al. (1974). Cells of E-type colonies are shown to be of epithelial origin. In contrast our data indicate a different origin of almost all cells of F-type colonies and of the large majority of cells of AF-type colonies. Cells of epithelial origin and positively stained with antibodies to epidermal prekeratin are occasionally scattered in F-type colonies and in variable percentages (up to 30%) in AF-type colonies. Surprisingly, cryostat sections of the amniotic epithelium and isolated groups of amniotic cells showed positive reactions with both antibodies to vimentin and prekeratin. The possibility that amniotic cells may be different from other epithelial cells in that they contain both types of filaments simultaneously already in situ is presently under investigation.Part of this work is included in the doctoral thesis of Irmgard Treiss to be submitted to the Faculty of Medicine of the University of Heidelberg  相似文献   

20.
《Cell》1986,45(3):407-415
We have analyzed intracellular distributions of mRNAs for the cytoskeletal proteins actin, vimentin, and tubulin by in situ hybridization. Although polyadenylated RNA was homogeneously distributed throughout the cell, actin mRNA demonstrated a nonhomogeneous distribution in 95% of randomly selected chicken embryonic myoblasts and fibroblasts, as detected by isotopic and nonisotopic techniques. Actin mRNA concentrations were highest at cell extremities, generally in lamellipodia, where grain densities were up to 16-fold higher than in areas near the nucleus. Vimentin mRNA, unlike actin mRNA, was distributed near the nucleus. Tubulin mRNA appeared most concentrated in the peripheral cytoplasm. These results demonstrate that cytoplasmic mRNAs are localized in specific, nonrandom cellular patterns and that localized concentrations of specific proteins may result from corresponding localization of their respective mRNAs. Hence, actin mRNA distribution may result in increased concentration of actin filaments in lamellipodia of motile cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号