首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although the introduction of Nile perch, Lates niloticus , to Lake Victoria has received intense global attention, especially in relation to its impact on endemic cichlid species and on fishery yields, fundamental information on its taxonomy and population genetics is lacking. Most importantly, the introduced fish originated from two lakes (Lakes Albert and Turkana) containing three Lates species, and it has never been entirely clear which of these became established in Lake Victoria, or indeed whether the Lake Victoria population is derived from hybridization between Lates species. In addition, genetic drift caused by the relatively small founder population (≈ 400), the initially slow population increase followed by a period of explosive population growth, and selection pressures in the new environment may have resulted in substantial genetic changes. Allozyme data indicated that the introduced Nile perch of Lake Victoria were mainly L. niloticus from Lake Albert, although maximum likelihood estimates of stock contributions (GSI) suggested the presence of L. macrophthalmus. In contrast, introduced Nile perch in adjacent smaller lakes (Lakes Kyoga and Nabugabo) appeared to be entirely L. niloticus . The effect of the introductions on allozyme diversity varied among lakes and appeared to be uncorrelated to the number of fish introduced.  相似文献   

2.
The fish stocks of Lakes Kyoga and Victoria have changed since Nile perch, Lates niloticus (L.), was introduced, and this is reflected in the prey ingested by the predator. Initially, haplochromine cichlids constituted the main prey of most sizes of Nile perch. As the stocks of these have declined, Caridina nilotica (Roux) and Anisopteran nymphs have become the dominant food of the juveniles, while Rastrineobola argentea (Pellegrin), juvenile Nile perch and Oreochromis niloticus (L.) have become the main food of larger Nile perch. Apart from R. argentea , most of the native fish species of these lakes have disappeared. The stocks of Nile perch in Lake Kyoga, to which it was introduced earlier than to Lake Victoria, have declined after dominating the fishery since 1965. and have been superseded by O. niloricus . an introduced herbivore. Similar changes are now occurring in Lake Victoria. The Nile perch might not maintain the high yield realized in the two lakes when haplochromines were abundant. It is therefore necessary to exercise caution with high and long-term investments aimed specifically at developing the Nile perch fishery.  相似文献   

3.
The systematics of thc genus Lares Cuvier, 1828 in Lake Albert were examined. It is concluded that the inshore form, originally described as Lates albertianus Worthington, 1929 and subsequently as L. niloticus albertianus should be considered as a synonym of L. niloticus (Linné, 1762) but that the offshore form, Lates macrophthalmus Worthington, 1929, warrants full systematic status. It had been relegated to subspecific status, L. niloticus macrophthalmus .
The lectotype for L. macrophthalmus is selected and redescribed. A method by which the species could have evolved, based on suspected differences in partial pressures of oxygen at which the blood haemoglobins of the two species become saturated, and on desiccation of the lake in the Pleistocene period, is described.
The diagnostic value of allometry in distinguishing between the two species on a morphological basis is discussed, as is the distribution of the two species in Lake Albert.
The possible significance of interspecific differences in the shape of the caudal peduncle and caudal fin is considered.  相似文献   

4.
The systematics of thc genus Lares Cuvier, 1828 in Lake Albert were examined. It is concluded that the inshore form, originally described as Lates albertianus Worthington, 1929 and subsequently as L. niloticus albertianus should be considered as a synonym of L. niloticus (Linné, 1762) but that the offshore form, Lates macrophthalmus Worthington, 1929,warrants full systematic status. It had been relegated to subspecific status, L. niloticus macrophthalmus .
The lectotype for L. macrophthalmus is selected and redescribed. A method by which the species could have evolved, based on suspected differences in partial pressures of oxygen at whichthe blood haemoglobins of the two species become saturated, and on desiccation of the lake in the Pleistocene period, is described.
The diagnostic value of allometry in distinguishing between the two species on a morphologicalbasis is discussed, as is the distribution of the two species in Lake Albert.
The possible significance of interspecific differences in the shape of the caudal peduncle andcaudal fin is considered.  相似文献   

5.
After the disappearance of the haplochromine species in the Nyanza Gulf of Lake Victoria as a result of predation by Lates niloticus , the latter has turned its attention to aquatic invertebrates and other fish. Changes in the diet of the Nile perch with increase in its size have been observed: young L. niloticus preyed mostly on invertebrates, including crustaceans and various small aquatic insects; large, immature L. niloticus supplemented the invertebrate diet with both young and small fish; adults above 80 cm total length were mainly piscivorous. L. niloticus feeds on fish prey of about one third its own length.
The tendency of L. niloticus to switch from one prey item to another, depending on availability, is reported; e.g., in the Nyanza Gulf, the prey diet has shifted from the haplochromine to Caridina nilotica and L. niloticus juveniles.  相似文献   

6.
Since the beginning of fisheries in Lake Victoria, two native tilapiine species, Oreochromis esculentus and Oreochromis variabilis , were the main target of the local fishermen. A continuous increase in fishing pressure led initially to a declining catch per unit of effort, and a smaller average fish size; eventually, there was a reduced landing of tilapiines. To boost the fisheries, three alien tilapiine species and the Nile perch Lates niloticus were introduced. Thirty years after its introduction, Oreochromis niloticus appeared to be the most successful tilapiine species. It replaced the indigenous tilapiines almost completely before the Nile perch came to dominate the ecosystem of Lake Victoria. Reduced fishing pressure on the tilapiines in the 1980s, due to the shift of the local fishery towards the Nile perch, resulted in an increase in the stock of O. niloticus and an increase in average fish size. Subsequently, the total mass of O. niloticus landed increased. The stocks of the indigenous tilapiines did not recover but declined to extremely low levels, or vanished from the main lake. Currently, these species still occur in satellite lakes of Lake Victoria, from which O. niloticus is absent. Nile perch feed on O. niloticus; however, the limited overlap in distribution between piscivorous Nile perch and O. niloticus of consumable sizes is probably an important factor in explaining the coexistence of the two species. The main cause of the disappearance of the native tilapiine species is presumed to be competitive dominance by O. niloticus .  相似文献   

7.
Synopsis Nile perch, Lates niloticus, and Nile tilapia, Oreochromis niloticus, were originally transplanted from Lake Albert in western Uganda to the African Great Lakes, Lake Victoria and Lake Kyoga, where they are partially implicated in reduction of the fish species diversity. Lake Albert is facing multiple environmental changes, including declining fish species diversity, hyper-eutrophication, hypoxia, and reduced fish catches. To examine the role of Nile perch and Nile tilapia in the food web in their native Lake Albert, we estimated their diets using stable nitrogen and carbon isotopes. In Lake Albert, the tilapiine congeners (closely related species), Tilapia zillii, Oreochromis leucostictus, and Sarethorodon galilaeus, and the centropomid Nile perch congener, Lates macrophthalmus, have narrower diet breath in the presence of the native O. niloticus and L. niloticus. A computerized parameter search of dietary items for five commercially important fish species (Hydrocynus forskahlii, Bagrus bayad, L. niloticus, Alestes baremose and Brycinus nurse) was completed using a static isotopic mixing model. The outcome of the simulation for most fish species compared favorably to previously published stomach contents data for the Lake Albert fishes dating back to 1928, demonstrating agreement between stable isotope values and analyses of stomach contents. While there were some indications of changes in the diets of L. niloticus and A. baremose diets over the past 20 years in parallel with other changes in the lake, for the most part, food web structure in this lake remained stable since 1928. The Lake Albert fish assemblage provides insight into the invasion success of L. niloticus and O. niloticus.  相似文献   

8.
尼罗尖吻鲈和鳜鱼染色体组型分析及比较   总被引:1,自引:0,他引:1  
采用PHA、秋水仙碱腹腔或背部肌肉注射,活体培养法,以前肾为材料,低渗-空气干燥法制片,进行染色体观察,运用Micromeasure version 3.3染色体分析软件和Photoshop 7.0软件首次分析了尼罗尖吻鲈的染色体数目和核型,并同鳜鱼染色体数目和核型进行了分析比较,对今后拟采取的杂交尝试提供理论基础。结果显示:尼罗尖吻鲈染色体众数为2n=48,核型公式为2m+4sm+12st+30t,染色体臂数(NF)为54;鳜鱼染色体众数为2n=48,核型公式为6sm+12st+30t,染色体臂数(NF)亦为54;两种鱼染色体短臂上均无随体,单臂染色体较多。分析表明尼罗尖吻鲈与鳜鱼杂交成功的可能性较大。  相似文献   

9.
The introduction of invasive Nile tilapia (Oreochromis niloticus), and the rapacious predator Nile perch (Lates niloticus), into Lake Victoria resulted in a decline in population sizes, genetic diversity and even extirpation of native species which were previously the mainstay of local fisheries. However, remnant populations of native fish species, including tilapia, still persist in satellite lakes around Lake Victoria where they may coexist with O. niloticus. In this study we assessed population genetic structure, diversity, and integrity of the native critically endangered Singidia tilapia (O. esculentus) in its refugial populations in the Yala swamp, Kenya, and contrasted this diversity with populations of the invasive tilapia O. niloticus in satellite lakes (Kanyaboli, Namboyo and Sare) and Lake Victoria. Based on mtDNA control region sequences and eight nuclear microsatellite loci, we did not detect any mtDNA introgression between the native and the invasive species in Lakes Kanyaboli and Namboyo, but did find low levels of nuclear admixture, primarily from O. niloticus to O. esculentus. Some genetic signal of O. esculentus in O. niloticus was found in Lake Sare, where O. esculentus is not found, suggesting it has recently been extirpated by the O. niloticus invasion. In both species, populations in the satellite lakes are significantly genetically isolated from each other, with private mtDNA haplotypes and microsatellite alleles. For O. niloticus, genetic diversity in satellite lakes was similar to that found in Lake Victoria. Our data imply a low frequency of immigration exchange between the two populations of O. esculentus and we suggest that the populations of this endangered species and important fisheries resource should be conserved separately in Lakes Kanyaboli and Namboyo and with high priority.  相似文献   

10.
This study looked for evidence of trophic shifts in the diet of two predatory catfishes ( Bagrus docmac and Schilbe intermedius ) following the establishment of introduced Nile perch ( Lates niloticus ) into lakes of the Lake Victoria basin. Bagrus docmac exhibited a shift from a primarily piscivorous diet dominated by haplochromine cichlids to a broader diet that included a significant proportion of invertebrates and the cyprinid fish, Rastrineobola argentea , which became abundant following depletion of the haplochromines. Schilbe intermedius exhibited a trophic shift from a piscivorous diet dominated by haplochromines to an insectivorous diet. The flexibility in diet exhibited by these two catfishes may have permitted these species to persist, albeit in reduced numbers, subsequent to the introduction of Nile perch and may facilitate resurgence as fishing pressure reduces numbers of large Nile perch.  相似文献   

11.
In Lake Nabugabo, Uganda, a satellite of Lake Victoria, approximately 50% of the indigenous fishes disappeared from the open waters subsequent to the establishment of the introduced predatory Nile perch, Lates niloticus. This pattern is similar to the faunal loss experienced in the much larger Lake Victoria. Several of these species persisted in wetland refugia (e.g. ecotonal wetlands, swamp lagoons); however, deep swamp refugia (habitats lying well within the dense interior of fringing wetlands), are available only to a subset of the basin fauna with extreme tolerance to hypoxia. Although air-breathers are common in deep swamp refugia; we also documented a surprisingly high richness and abundance of non-air-breathing fishes. We describe several mechanisms that may facilitate survival in deep swamp refugia including high hemoglobin concentration, high hematocrit, large gill surface area and a low critical oxygen tension (P(c)). In addition, swamp-dwelling fishes showed lower PO(2) thresholds for onset of aquatic surface respiration than the lake-dwelling fishes. This suggests higher tolerance to hypoxia in the swamp fishes because they are able to withstand a lower oxygen tension before approaching the surface. We suggest that physiological refugia may be important in modulating the impact of Nile perch and indigenous fishes in the Lake Nabugabo region; this highlights the need to evaluate relative tolerance of introduced predators and indigenous prey to environmental stressors.  相似文献   

12.
Haplochromine cichlids used to be the main prey of the introduced Nile perch, Lates niloticus, in Lake Victoria. After depletion of the haplochromine stocks at the end of the 1980s, Nile perch shifted to the shrimp Caridina nilotica and to a lesser degree to its own young and the cyprinid Rastrineobola argentea. In the present study, we investigated the Nile perch diet in the northern Mwanza Gulf after resurgence of some of the haplochromine species and compared it with data collected in the same area in 1988/1989. It became clear that haplochromines are again the major prey of Nile perch. The dietary shift from invertebrate feeding (shrimps) to feeding on fish (haplochromine cichlids) occurs at a smaller size than it did when Nile perch were taking primarily dagaa and juvenile Nile perch as their fish prey. The apparent preference for haplochromines as prey has reduced the degree of cannibalism considerably, which may have a positive impact on Nile perch recruitment.  相似文献   

13.
The piscivorous Nile perch was introduced into Lake Victoria some 30 years ago, since when it has completely transformed the fishing industry and the species composition of the fish fauna of the lake. The original multispecies fishery, based mostly on cichlids (haplochromines, tilapias), cyprinids ( Barbus, Labeo, Rastrineobola ) and siluroids ( Bagrus, Clarias, Synodontis, Schilbe ), has changed dramatically to one based on three species: the introduced Nile perch, the cyprinids, Rastrineobola argenrea (Pellegrin), and the introduced Nile tilapia, Oreochromis niloticus (Linnaeus).
Within 25 years of its introduction the Nile perch became ubiquitous and now occurs in virtually every habitat with the exception of swamps and affluent rivers. It has preyed on all other species with profound effects, especially on the stocks of haplochromines. These originally comprised 80% of the total fish biomass in Lake Victoria, but have now decreased to less than 1% offish catches from the Kenyan waters of the lake. The fishermen of Lake Victoria have adjusted to this ecological crisis by using large-meshed nets to catch Nile perch, which has become the most important commercial species. For the first time in the history of Lake Victoria, fish fillets are now being exported to several overseas countries: the fillets are all from Nile perch.  相似文献   

14.
The introduction of the predatory Nile perch, Lates niloticus, into the Lake Victoria basin coincided with a dramatic decline in fish species richness and diversity. This study focused on interactions between Nile perch and indigenous fishes in Lake Nabugabo, Uganda, a small satellite lake of Lake Victoria. We evaluated how the foraging impact of juvenile Nile perch on prey fishes varied with the size of the predator. We also evaluated the role of wetland ecotones in minimizing interaction between Nile perch and indigenous fishes. Wetland ecotones in Lake Nabugabo were characterized by complex structure (e.g., dense vegetation) and lower dissolved oxygen levels than non-wetland (exposed) areas. Nile perch (8.6–42.2cm, TL) were 3.7 times more abundant in offshore exposed areas than in inshore areas near wetland ecotones, and the proportion of Nile perch using wetland and exposed areas was independent of their body size. However, species richness was higher in waters at wetland ecotones than in exposed areas. Nile perch (5–35cm, TL) exhibited a shift in diet at approximately 30cm TL from feeding primarily on invertebrates to piscivory. Although the shift to piscivory occurred at approximately the same body size for Nile perch from both wetland and exposed habitats, the shift to piscivory was less abrupt in Nile perch captured near wetland ecotones. Nile perch from wetland areas consumed a greater diversity and a larger percentage of fish prey than those from exposed sites. However, the low abundance of Nile perch in wetland ecotones suggested that interaction between predator and prey in these areas is much reduced.  相似文献   

15.
Experiments were conducted in earth ponds (242–1260m2) to evaluate the Nile perch (Lates niloticus L.) as a predator for recruitment control and the production of marketable Oreochromis niloticus L. in the Sudan. Supply of the predatory fish was maintained by induced spawning of L. niloticus brooders by raising the water level in a 1–0 ha earth pond. Lates niloticus fingerlings (7–5 cm total length) were then stocked with same size O. niloticus at the ratios 1:5, 1:10 and 1:15, Lates:Oreochromis , respectively. Over a period of 7 months Lates niloticus reduced young 50g) Oreochromis population and enhanced the production of preferred-size ( 200 g) Oreochromis. The ratio 1:5 Lates:Oreochromis was established to be the most desirable for Lates -with a total production of 0.2428 kg/m2 of O. niloticus with 55.7% (by weight) at the target size averaging 287.5g. The ratios 1:10 and 1:15 produced 0.2106 and 0.2153 kg m2 of O. niloticus , with 49.4% and 16.9% averaging 235.0 and 210.0 g, respectively.  相似文献   

16.
Abstract:  Semlikiichthys is a fossil genus of perciform fish from the Neogene continental deposits of Africa. Until now, it was known in Mio-Pliocene sites of the Great Lake Region and of the River Nile by a single species, S. rhachirhinchus . Here, we describe new Semlikiichthys material recovered from Central Africa (Upper Miocene of Toros-Menalla, western Djurab, Chad), and compare it to S. rhachirhinchus , which is the only known species of the genus, and also with Lates niloticus , which is the fish in African Neogene deposits that most closely resembles it. We attribute the Chadian material to Semlikiichthys darsao sp. nov., based on ten osteological characters of the neurocranium, the maxilla, the dentary and the first vertebra. Our comparative anatomical study also enables us to provide a revised diagnosis for the genus and to reconsider the taxonomic attribution of the fossils assigned to it. Furthermore, the fossil record of Semlikiichthys supports a connection between sub-basins of the Nilo-Sudanese region during the Miocene, and a disruption between the Great Lake and the Nile Basin on the one hand and the Chadian Basin on the other before 7 Ma.  相似文献   

17.
Lates niloticus is not native to Lake Victoria but was introduced during or shortly before 1960. It remained relatively uncommon until 1975, when the number in the Nyanza Gulf began to increase impressively, the estimated catch rising over 100-fold between 1978 and 1982. Originally Lates was piscivorous, its diet reflecting the composition of the native fish community. The present investigation has revealed that its diet is now almost entirely comprised of Caridina nilotica , a small microphagous prawn, and juvenile Lates. Native fish species, except for the small pelagic Rastrineobola argenteus , are very rarely consumed. This change in diet is a result of the shattering impact Lates predation has had on the native fishes, which have been virtually wiped out. The original community, which was dominated by several hundred haplochromine species and the catfishes Clarias mossambicus and Bagrus docmac which preyed upon them, and included two endemic tilapiine cichlids and 38 species of non-cichlids, no longer exists. It has been replaced by a community dominated by Lates which now accounts for well over 80% of the fish biomass in the Nyanza Gulf and very nearly 100% in the study area. The only other species regularly encountered were Oreochromis niloticus , an introduced tilapiine, and Rastrineobola argenteus , a native zooplanktivore.  相似文献   

18.
The Nile perch (Lates niloticus) is a notorious invasive species. The introductions of Nile perch into several lakes and rivers in the Lake Victoria region led to the impoverishment of trophic food webs, particularly well documented in Lake Victoria. Additionally, its parasites were co-introduced, including Dolicirroplectanum lacustre (Monogenea, Diplectanidae). Dolicirroplectanum lacustre is the single monogenean gill parasite of latid fishes (Lates spp.) inhabiting several major African freshwater systems. We examined the intra-specific diversification of D. lacustre from Lates niloticus in Lake Albert, Uganda (native range) and Lake Victoria (introduced range) by assessing morphological and genetic differentiation, and microhabitat preference. We expected reduced morphological and genetic diversity for D. lacustre in Lake Victoria compared with Lake Albert, as a result of the historical introductions. We found that D. lacustre displayed high morphological variability within and between African freshwaters, with two morphotypes identified, as in former studies. The single shared morphotype between Lake Albert and Lake Victoria displayed similar levels of haplotype and nucleotide diversity between the lakes. Mitonuclear discordance within the morphotypes of D. lacustre indicates an incomplete reproductive barrier between the morphotypes. The diversification in the mitochondrial gene portion is directly linked with the morphotypes, while the nuclear gene portions indicate conspecificity. Based on our results, we reported reduced genetic and morphological diversity, potentially being a result of a founder effect in Lake Victoria.  相似文献   

19.
The fatty acid composition in the heart tissue and muscle tissue of the Nile perch, Lates niloticus, and Nile tilapia, Oreochromis niloticus populations from Lakes Kioga and Victoria was determined by methanolysis and gas chromatography of the resulting fatty acid methyl esters. The analytical data were treated by multivariate principal component analysis. The most abundant individual fatty acids were palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1n9), vaccenic acid (18:1n7), arachidonic acid (20:4n6) and docosahexaenoic acid (22:6n3). Due to high levels of both n6 and n3 fatty acids, the ratios of n3 to n6 were between 1 and 2, typical for freshwater fish species. Two Lake Victoria and one Lake Kioga populations of Nile tilapia and Nile perch were distinguished by the fatty acid profiles in their heart and muscle tissue. The heart tissue showed better separation than muscle tissue, due to dominance of polar phospholipids. It is rationalised that genetics are more important than diet in determining the fatty acid composition of the tissues.  相似文献   

20.
Synopsis There has been a decline, and in some cases an almost total disappearance, of many of the native fish species of lakes Victoria and Kyoga in East Africa since the development of the fisheries of these lakes was initiated at the beginning of this century. The Nile perch, Lates niloticus, a large, voracious predator which was introduced into these lakes about the middle of the century along with several tilapiine species, is thought to have caused the reduction in the stocks of several species. But overfishing and competition between different species also appear to have contributed to this decline. By the time the Nile perch had become well established, stocks of the native tilapiine species had already been reduced by overfishing. The Labeo victorianus fishery had also deteriorated following intensive gillnetting of gravid individuals on breeding migrations. L. niloticus is, however, capable of preying on the species which haven been overfished and could have prevented their stocks from recovering from overfishing. L. niloticus is also directly responsible for the decline in populations of haplochromine cichlids which were abundant in these lakes before the Nile perch became established. Even without predation by Nile perch, it has been shown that the haplochromine cichlids could not have withstood heavy commercial exploitation if a trawl fishery had been established throughout Lake Victoria. Their utilisation for human food has also posed some problems. The abundance of the native tilapiine species may also have been reduced through competition with introduced species which have similar ecological requirements. At present, the Nile perch and one of the introduced tilapiine species, Oreochromis niloticus, form the basis of the fisheries of lakes Victoria and Kyoga.Invited editorial  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号