共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this study, rate equations that predict the regulatory kinetic behavior of homocitrate synthase were derived, and simulation of the predicted behavior was carried out over a range of values for the kinetic parameters. The data obtained allow application of the resulting expressions to enzyme systems that exhibit activation and inhibition as a result of the interaction of effectors at multiple sites in the free enzyme. Homocitrate synthase was used as an example in terms of its activation by Na+ binding to the active enzyme conformer at an allosteric site, inhibition by binding to the active site, and inhibition by lysine binding to the less active enzyme conformer. 相似文献
3.
4.
A luciferase intermediate in the bacterial bioluminescence system, which is formed by reaction of enzyme with reduced flavin mononucleotide (FMNH2) and oxygen, is shown to emit light with added aldehyde under anaerobic conditions. The reaction with oxygen is thus effectively irreversible under the conditions used. The flavin chromophore has an absorption maximum at about 370 nm and the potential activity (bioluminescence yield) in the further reaction of the isolated intermediate with aldehyde is strictly proportional to the amount of this flavin chromophore. 相似文献
5.
6.
7.
Activity of tyrosine hydroxylase is regulated by feedback inhibition and inactivation by catecholamines, and activation by protein phosphorylation. In this article, reaction mechanisms for the conversion of tyrosine hydroxylase to an inactive/stable form by catecholamines, and activation of tyrosine hydroxylase by phosphorylation at Ser-40 are discussed. Inactivation may be induced by sub-stoichiometric amounts of catecholamines, and activation by phosphorylation of Ser-40 may require phosphorylation of three or all four subunits of a tyrosine hydroxylase molecule. Cooperative phosphorylation at Ser-40 in the subunits is also discussed. 相似文献
8.
We propose here a verifiable mechanism for the bacterial bioluminescence reaction involving a dioxirane intermediate. Participation of the dioxirane predicts either formation of an excited carbonyl, rather than the flavin, as the primary excited state in the reaction, or, through a CIEEL mechanism, the C4a hydroxyflavin or the chromophore of a secondary emitter protein could become excited. We propose energy transfer from the primary excited state to the C4a hydroxyflavin in the absence of the lumazine protein or the yellow fluorescence protein, while in the presence of either of the secondary emitter proteins, excitation energy would be transferred to the second protein-bound chromophore. The mechanism is similar to other currently discussed mechanisms, except in the final steps leading to the primary excited state. The mechanism is consistent with the known details of the reactions of dioxiranes and of flavins and with recent studies of the secondary emitter proteins and bacterial luciferases. 相似文献
9.
Thiamine oxidase catalyzes the four-electron oxidation of the 5-hydroxyethyl group of thiamine to form thiamine acetic acid via an aldehyde intermediate. Evidence for the formation of this intermediate is derived from a number of kinetic approaches. The rate of thiamine acetic acid formation, as monitored by the rate of proton release, is subject to substrate inhibition and to inhibition by the presence of semicarbazide while the rate of O2 consumption (due to thiamine oxidation to the aldehyde and subsequently to the carboxylic acid) is unaffected. The transient formation of an intermediate with a maximal absorption at 370 nm in stopped-flow turnover experiments is dependent on the pH and the substrate concentration, and is prevented by the presence of semicarbazide, thus suggesting this transient absorption intermediate to be a result of formation of the aldehyde intermediate. A similar spectral intermediate is observed when hydroxythiamine is the substrate but is not observed with pyrithiamine. In the presence of large concentrations of pyrithiamine, the enzyme undergoes an irreversible inactivation which is not reversed on removal of pyrithiamine or its oxidation products by gel filtration or dialysis. This inhibition is prevented by the presence of thiols or of semicarbazide and is suggested to be due to the release of the aldehyde form of pyrithiamine from the catalytic site, which then reacts with the enzyme in a nonspecific manner. The structure of the 370-nm-absorbing intermediate is currently unknown but is suggested not to be the "yellow form" of thiamine. This suggestion is due to observed differences in absorption spectral properties and to the fact that it can also be formed from hydroxythiamine, which does not form the "yellow form" of thiamine on alkaline treatment. Taken together, these data suggest that, at or below saturating concentrations, thiamine remains bound to the catalytic site during the two sequential two-electron transfer steps, with 2 mol O2 being reduced to 2 mol H2O2. At high concentrations (greater than 10 Km), the intermediate thiamine aldehyde can be displaced from the catalytic site by thiamine simply by a mass-action effect. 相似文献
10.
Carboxyl group involvement in the meta I and meta II stages in rhodopsin bleaching. A Fourier transform infrared spectroscopic study 总被引:1,自引:0,他引:1
Structural changes due to photoreceptor membrane bleaching can be studied by Fourier transform infrared difference spectroscopy [1,2]. In this paper we focus on the differences between rhodopsin and metarhodopsin I or II. Peaks in the 1700-1770 cm-1 region are observed, which may be produced by carbonyl groups in either carboxyl (COOH) or ester carbonyl (COOC) groups, the latter being found exclusively in membrane lipids. In order to distinguish between these two types of carbonyl groups, we have studied reconstituted membranes of rhodopsin in a synthetic phosphatidylcholine that lacks ester carbonyl groups. On this basis, we conclude that the major changes in this region are due to rhodopsin carboxyls which undergo either a change in local environment or a protonation/deprotonation reaction. Additional small changes in this region may reflect a direct involvement of phospholipids in the metarhodopsin I-to-II transition. One or more groups responsible for peaks near 1727 and 1702 cm-1 are inaccessible to the outside medium according to hydrogen/deuterium exchange. In contrast, carboxyl group(s) producing peaks near 1710, 1745 and 1768 cm-1 exchange freely with the outside medium and are therefore likely to be located near the membrane surface. Removal of a portion of the C-terminal tail region using proteinase K demonstrates that the carboxyl groups in the C-terminal sequence 248-348 are not involved directly in the rhodopsin to metarhodopsin II transition. At the meta I stage, only carboxyl peaks associated with buried groups appear, suggesting that the initial bleaching events, leading to the formation of this intermediate, produce structural rearrangements in the interior region of rhodopsin. These changes then spread to the peripheral surface regions during the metarhodopsin I-to-II transition. 相似文献
11.
12.
13.
Chromophore structure in bacteriorhodopsin's N intermediate: implications for the proton-pumping mechanism 总被引:27,自引:0,他引:27
S P Fodor J B Ames R Gebhard E M van den Berg W Stoeckenius J Lugtenburg R A Mathies 《Biochemistry》1988,27(18):7097-7101
By elevating the pH to 9.5 in 3 M KCl, the concentration of the N intermediate in the bacteriorhodopsin photocycle has been enhanced, and time-resolved resonance Raman spectra of this intermediate have been obtained. Kinetic Raman measurements show that N appears with a half-time of 4 +/- 2 ms, which agrees satisfactorily with our measured decay time of the M412 intermediate (2 +/- 1 ms). This argues that M412 decays directly to N in the light-adapted photocycle. The configuration of the chromophore about the C13 = C14 bond was examined by regenerating the protein with [12,14-2H]retinal. The coupled C12-2H + C14-2H rock at 946 cm-1 demonstrates that the chromophore in N is 13-cis. The shift of the 1642-cm-1 Schiff base stretching mode to 1618 cm-1 in D2O indicates that the Schiff base linkage to the protein is protonated. The insensitivity of the 1168-cm-1 C14-C15 stretching mode to N-deuteriation establishes a C = N anti (trans) Schiff base configuration. The high frequency of the C14-C15 stretching mode as well as the frequency of the 966-cm-1 C14-2H-C15-2H rocking mode shows that the chromophore is 14-s-trans. Thus, N contains a 13-cis, 14-s-trans, 15-anti protonated retinal Schiff base.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
15.
Murine lymph node cells (LNC), which we showed previously to noncompetitively inhibit antibody-dependent cellular cytotoxicity (ADCC) to an erythrocyte target, were tested for their ability to inhibit ADCC to a tumor target, EL-4. Both a 4-hr 51Cr-release cytotoxicity assay and an overnight 125IUdR (iododeoxyuridine) postlabeling cytostasis assay were used. Normal autologous lymph node cells inhibited spleen cell-mediated ADCC in both assays. Inhibition by LNC was dose dependent, but comparable numbers of sheep erythrocytes did not inhibit, indicating that LNC-mediated inhibition was not simply a matter of crowding. Inhibitory activity was enriched in LNC after removal of Fc receptor-bearing cells on EA monolayers. 相似文献
16.
17.
A meta cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P166. 总被引:1,自引:0,他引:1 下载免费PDF全文
Bacterial degradation of biphenyl and polychlorinated biphenyls proceeds by a well-studied pathway which produces benzoate and 2-hydroxypent-2,4-dienoate (or, in the case of polychlorinated biphenyls, the chlorinated derivatives of these compounds). Pseudomonas cepacia P166 utilizes 4-chlorobiphenyl for growth and produces 4-chlorobenzoate as a central intermediate. In this study we found that strain P166 further transforms 4-chlorobenzoate to 4-chlorocatechol, which is mineralized by a meta cleavage pathway. Key metabolites which we identified include the meta cleavage product (5-chloro-2-hydroxymuconic semialdehyde), 5-chloro-2-hydroxymuconate, 5-chloro-2-oxopent-4-enoate, 5-chloro-4-hydroxy-2-oxopentanoate, and chloroacetate. Chloroacetate accumulated transiently, and slow but stoichiometric dehalogenation was observed. 相似文献
18.
Holthues H Engel L Spessert R Vollrath L 《Biochemical and biophysical research communications》2005,326(1):160-165
The directly light-sensitive chick pineal gland contains at least two photopigments. Pinopsin seems to mediate the acute inhibitory effect of light on melatonin synthesis, whereas melanopsin may act by phase-shifting the intrapineal circadian clock. In the present study we have investigated, by means of quantitative RT-PCR, the daily rhythm of photopigment gene expression as monitored by mRNA levels. Under a 12-h light/12-h dark cycle, the mRNA levels of both pigments were 5-fold higher in the transitional phase from light to dark than at night, both in vivo and in vitro. Under constant darkness in vivo and in vitro, the peak of pinopsin mRNA levels was attenuated, whereas that of melanopsin was not. Thus, whereas the daily rhythm of pinopsin gene expression is dually regulated by light plus the intrapineal circadian oscillator, that of melanopsin appears to depend solely on the oscillator. 相似文献
19.