首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated retinol effects in ornithine decarboxylase activity in Sertoli cells. We also tested the hypothesis that free radical scavengers and iron chelators may attenuate the effect of retinol. Sertoli cells isolated from 15-day-old Wistar rats were previously cultured for 48 h and then treated with retinol by 24 h with or without mannitol (1 mM) or 1,10 phenanthroline (100 M). We measured ornithine decarboxylase and catalase activities and malondialdehyde concentrations in response to retinol treatment. In response to 7 M retinol treatment ornithine decarboxylase activity increased 30%. Retinol-induced ornithine decarboxylase activity was significantly decreased by addition of free radical scavenger (mannitol) or iron chelator (1,10 phenanthroline). In addition the same effect was observed in catalase increased activity and in malondialdehyde concentrations. These results suggest that retinol treatment induced ornithine decarboxylase and catalase activity and increased malondialdehyde concentration. These effects appear to be mediate by ROS.  相似文献   

2.
Streptozotocin (STZ) is an antibiotic which can be used to induce diabetes in experimental animals in order to have an insight into pathogenesis of this disease. To use STZ as a diabetogenic substance, its molecular mode of action should be elucidated. Using the alkaline comet assay, we showed that STZ at concentrations in the range 0.01-100 micromol/L induced DNA damage in normal human lymphocytes and HeLa cancer cells in a dose-dependent manner. Lymphocytes were able to remove damage to their DNA within a 30-min repair incubation, whereas HeLa cells completed the repair in 60 min. Vitamins C and E at 10 and 50 micromol/L diminished the extent of DNA damage induced by 50 micromol/L STZ. Pretreatment of the lymphocytes with the nitrone spin trap, alpha-(4-pyridil-1-oxide)-N-tert-butylnitrone (POBN) or ebselen, which mimics glutathione peroxidase, or pyrrolidine dithiocarbamate (PDTC) reduced the extent of DNA damage evoked by STZ. The cells exposed to STZ and treated with endonuclease III (Endo III), formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), the enzymes recognizing oxidized and alkylated bases, displayed greater extent of DNA damage than those not treated with these enzymes. These results suggest that free radicals may be involved in the formation of DNA lesions induced by streptozotocin. The drug can also alkylate DNA bases. This broad range of DNA damage induced by STZ indicates that the drug may seriously affect genomic stability in normal and pathological cells.  相似文献   

3.
Sertoli cells actively metabolize glucose that is converted into lactate, which is used by developing germ cells for their energy metabolism. Androgens and oestrogens have general metabolic roles that reach far beyond reproductive processes. Hence, the main purpose of this study was to examine the effect of sex hormones on metabolite secretion/consumption in primary cultures of rat Sertoli cells. Sertoli cell-enriched cultures were maintained in a defined medium for 50?h. Glucose and pyruvate consumption, and lactate and alanine secretion were determined, by 1H-NMR (proton NMR) spectra analysis, in the presence or absence of 100?nM E2 (17β-oestradiol) or 100?nM 5α-DHT (dihydrotestosterone). Cells cultured in the absence (control) or presence of E2 consumed the same amount of glucose (29±2?pmol/cell) at similar rates during the 50?h. After 25?h of treatment with DHT, glucose consumption and glucose consumption rate significantly increased. Control and E2-treated cells secreted similar amounts of lactate during the 50?h, while the amount of lactate secreted by DHT-treated cells was significantly lower. Such a decrease was concomitant with a significant decrease in LDH A [LDH (lactate dehydrogenase) chain A] and MCT4 [MCT (monocarboxylate transporter) isoform 4] mRNA levels after 50?h treatment in hormonally treated groups, being more pronounced in DHT-treated groups. Finally, alanine production was significantly increased in E2-treated cells after 25?h treatment, which indicated a lower redox/higher oxidative state for the cells in those conditions. Together, these results support the existence of a relation between sex hormones action and energy metabolism, providing an important assessment of androgens and oestrogens as metabolic modulators in rat Sertoli cells.  相似文献   

4.
The genotoxic effect of chloroquine (CQ), a 4-aminoquinoline antimalarial drug was investigated in rat liver cells using the alkaline comet assay. Chloroquine (0–1000 μmol/L) significantly increased DNA strand breaks of rat liver cells dose-dependently. Rat liver cells exposed to CQ (100–500 μmol/L) and treated with endonuclease III and formamidopyrimidine-DNA glycosylase, the bacterial DNA repair enzymes that recognize oxidized pyrimidine and purine, respectively, showed greater DNA damage than those not treated with the enzymes, providing evidence that CQ induced oxidation of purines and pyrimidines. Treatment of cells with 5 mmol/L N-acetylcysteine, an intracellular reactive oxygen species (ROS) scavenger, and 100 μmol/L and 250 μmol/L deferoxamine, an established iron chelator, significantly decreased the CQ-induced strand breaks and base oxidation, respectively. Similarly, the formation of DNA strand breaks and oxidized bases was prevented by vitamin C (10 μmol/L) (a water-soluble antioxidant), quercetin (50 μmol/L) (an antioxidant flavonoid), and kolaviron (30 μmol/L and 90 μmol/L) (an antioxidant and a liver hepatoprotective phytochemical). The results indicate that the genotoxicity of CQ in rat liver cells might involve ROS and that free radical scavengers may elicit protective effects in these cells.  相似文献   

5.
We studied the effects of free radical scavengers, superoxide dismutase (SOD), vitamin E, and EGB 761, on ion shifts (Na+, K+, and Ca2+) induced by ischemia reperfusion in rat retina obtained from spontaneously hypertensive rats. Eyes were subjected to 90 min of retinal ischemia followed by 24 h of reperfusion. Two basic protocols were used: (1) chronic application, in which rats received SOD (7500, 15,000, and 30,000 U/kg, i.v.), vitamin E (50, 100, and 200 mg/kg, i.v.), and EGB 671 (50, 100, and 200 mg/kg, orally) for 10 d, respectively; and (2) acute administration, in which 7500, 15,000, and 30,000 U/kg of SOD, 50, 100, and 200 mg/kg of vitamin E, and 50, 100, and 200 mg/kg of EGB 761 were administered after an ischemic episode, at the onset of reperfusion, respectively. In the drug-free control group, 90 min ischemia followed by 24 h of reperfusion resulted in an accumulation of retinal sodium and calcium from their nonischemic control values of 76 ± 4 and 3.2 ± 0.1 μmol/g dry weight to 112 ± 6 (p < .001) and 6.2 (p < .001) μmol/g dry weight, respectively. Tissue potassium loss was also observed in this model of retinal ischemia reperfusion, and after 90 min ischemia followed by 24 h of reperfusion potassium content was significantly reduced from its nonischemic control value of 266 ± 5 to 207 ± 6 (p < .001) μmol/g dry weight. The chronic administration of SOD, vitamin E, and EGB 761 dose dependently reduced the reperfusion-induced ionic imbalance and improved the recovery of retinal ion contents. When these drugs were administered at the onset of reperfusion (acute administration), SOD and EGB 761 still significantly improved the recovery of retinal ion contents, but vitamin E failed to protect the ischemic reperfused retina. Our results indicate that the elimination of oxygen free radicals by free radicals scavengers may reduce the reperfusion-induced ionic imbalance and improve the ionic homeostasis in the injured retinal cells obtained from spontaneously hypertensive rats.  相似文献   

6.
Cis-diamminedichloroplatinum(II) (cisplatin, cis-DDP) is well studied anticancer drug, whose activity can be attributed to its ability to form adducts with DNA, but this drug can also form DNA-damaging free radicals, however this mechanism of cisplatin action is far less explored. Using the comet assay we studied cisplatin-induced DNA damage in the presence of spin traps: DMPO and PBN, Vitamins A, C and E as well as the tyrosine kinases inhibitor STI571 in normal human lymphocytes and leukemic K562 cells. The latter cells express the BCR/ABL fusion protein, which can be a target of the tyrosine kinase inhibitor STI571. A 20 h incubation with cisplatin at 1-10 microM induced DNA cross-links and DNA fragmentation in normal and cancer cells. Cisplatin could induce intra- and interstrand DNA-DNA cross-links as well as DNA-protein cross-links. DNA damage in K562 cells was more pronounced than in normal lymphocytes. In the presence of spin traps and vitamins we noticed a decrease in the DNA fragmentation in both cell types. Co-treatment of the lymphocytes with cisplatin at 10 microM and STI571 at 0.25 microg/ml caused an increase of DNA fragmentation in comparison with DNA fragmentation induced by cisplatin alone. In the case of K562 cells, an increase of DNA fragmentation was observed after treatment with cisplatin at 1 microM. Our results indicate that the free radicals scavengers could decrease DNA fragmentation induced by cisplatin in the normal and cancer cells, but probably they have no effect on DNA cross-linking induced by the drug. The results obtained with the BCR/ABL inhibitor suggest that K562 cells could be more sensitive towards co-treatment of cisplatin and STI571. Our results suggest also that aside from the BCR/ABL other factors such as p53 level, signal transduction pathways and DNA repair processes can be responsible for the increased sensitivity of K562 cells to cisplatin compared with normal lymphocytes.  相似文献   

7.
Metabolism of palmitate in cultured rat Sertoli cells   总被引:1,自引:0,他引:1  
Isolated rat Sertoli cells were incubated in the presence of [1-14C]palmitate at a cell concentration of 1.54 +/- 0.31 mg protein/flask (n = 7). The oxidation of palmitate was concentration dependent and maximal oxidation was obtained at 0.35 mM-palmitate. At a saturating concentration of palmitate the oxidation was linear for at least 6 h. About 65% of the total amount of palmitate oxidized during 5 h at 0.52 mM-palmitate (109 +/- 44 nmol/flask, n = 5) was recovered as CO2 and the rest as acid-soluble compounds. Almost all radioactive acid-soluble compounds which were secreted by the Sertoli cells were shown to be 3-hydroxybutyrate and acetoacetate. The palmitate recovery in cellular lipids and triacylglycerols was 9.4 +/- 5.1 nmol/flask (n = 5) and 3.5 +/- 2.8 nmol/flask (n = 5) respectively. Addition of glucose had no significant effect on palmitate oxidation but caused a 9-fold increase in esterification of palmitate into triacylglycerols. We conclude that cultured rat Sertoli cells can oxidize palmitate to CO2 and ketone bodies and that fatty acids appear to be a major energy substrate for these cells.  相似文献   

8.
9.
We report here that retinol-binding protein (RBP) is synthesized and secreted by rat Sertoli cells in culture. This was demonstrated in four ways. First, transthyretin (TTR) bound to Sepharose 4B retained a labeled protein from media collected from Sertoli cells provided with 35S-methionine, under the same conditions as authentic RBP is bound. The protein was co-eluted with authentic RBP by pure water. Second, this same radioactive protein co-eluted with pure RBP upon gel filtration. Third, when subjected to SDS-PAGE, the protein again migrated with pure RBP, as shown by radioautography. Finally, Sertoli cells were incubated with 35S-cysteine and the conditioned medium was put over a TTR-Sepharose column to isolate the radioactive protein, as characterized above. Cysteine residues were oxidized to cysteic acid residues, and the protein was submitted for sequencing through the first ten residues. Radioactivity was located only in the fourth residue, where a cysteine residue is found in rat RBP. This indicates that RBP is secreted by the Sertoli cell and may serve as the carrier of retinol to the developing germ cells, which are known to be dependent upon vitamin A.  相似文献   

10.
The oxidative hemolysis of rabbit erythrocytes induced by free radicals and its inhibition by chain-breaking antioxidants have been studied. The free radicals were generated from either a water-soluble or a lipid-soluble azo compound which, upon its thermal decomposition, gave carbon radicals that reacted with oxygen immediately to give peroxyl radicals. The radicals generated in the aqueous phase from a water-soluble azo compound induced hemolysis in air, but little hemolysis was observed in the absence of oxygen. Water-soluble chain-breaking antioxidants, such as ascorbic acid, uric acid, and water-soluble chromanol, suppressed the hemolysis dose dependently. Vitamin E in the erythrocyte membranes was also effective in suppressing the hemolysis. 2,2,5,7,8-Pentamethyl-6-chromanol, a vitamin E analogue without phytyl side chain, incorporated into dimyristoylphosphatidylcholine liposomes, suppressed the above hemolysis, but alpha-tocopherol did not suppress the hemolysis. Soybean phosphatidylcholine liposomes also induced hemolysis, and a lipid-soluble azo initiator incorporated into the soybean phosphatidylcholine liposomes accelerated the hemolysis. The chain-breaking antioxidants incorporated into the liposomes were also effective in suppressing this hemolysis.  相似文献   

11.
Tissue type (t) and urokinase type (u) plasminogen activators (PAs) have been shown to be secreted by Sertoli cells in the seminiferous tubules in a cyclic fashion and to be dependent upon FSH stimulation or upon the presence of adjacent spermatogenic cells. In the present study we have analyzed the production of PAs by retinoid-treated rat Sertoli cells. In addition, because retinoids modulate the response of Sertoli cells to FSH either potentiating or antagonizing its action, we have investigated a possible modulation of FSH-stimulated PA production. Under basal conditions, Sertoli cells, isolated from prepubertal rats, secrete predominantly uPA. A significant dose-dependent inhibition of uPA activity was observed after treatment with retinol, while no significant effect was detected upon tPA secretion. When Sertoli cells were cultured in the presence of 0.25 microM retinol, a significant inhibition of uPA activity was evident after 16 h of treatment and reached approximately 80% after 48 h of treatment. The analysis of the mRNA levels revealed that retinol induces an inhibition of the steady-state levels of uPA mRNA without affecting those of tPA. Moreover, retinol affected uPA mRNA levels by increasing mRNA turnover. The effect of retinoids on Sertoli cells isolated from older animals was less evident, possibly due to the reduced production of uPA with the increase of age of the donor animals. Our results on the effect of retinoids upon Sertoli cell uPA production reinforce the importance of retinoids in the control of postnatal testis development.  相似文献   

12.
13.
14.
The incorporation of 3H-proline into protein was regarded as a measure of total protein synthesis and the incorporation into hydroxyproline as indicative of collagen synthesis. Relative collagen synthesis (expressed as percent of total protein synthesized) by Sertoli and peritubular myoid cells cultured from 20-22 day old rat testis was estimated. In both secreted and cellular pools, relative collagen synthesis by Sertoli cells was significantly greater than by peritubular myoid cells. Coculture of Sertoli and myoid cells resulted in a significant increase in relative collagen synthesis when compared to monocultures of each cell type. Addition of serum to peritubular myoid cells resulted in a stronger stimulation of relative collagen production. Sertoli cell extracellular matrix inhibited relative collagen synthesis by peritubular myoid cells in the presence or absence of serum. Radioactivity into hydroxyproline as corrected per cellular DNA also showed similar results. Immunolocalization studies confirmed that both cell types synthesize type I and type IV collagens. These results indicate that stimulation of collagen synthesis observed in Sertoli-myoid cell cocultures is due to humoral interactions, rather than extracellular matrix, and Sertoli cell extracellular matrix regulates serum-induced increase in collagen synthesis by peritubular myoid cells.  相似文献   

15.
While the health benefits of antioxidant compounds from terrestrial plants are widely accepted in Western counties, there is less recognition of the health benefits of marine algal antioxidant compounds. Oceans are an abundant source of biomaterials, with many natural antioxidants derived from marine algae being investigated as potential anti-aging, anti-inflammatory, anti-bacterial, anti-fungal, cytotoxic, anti-malarial, anti-proliferative, and anti-cancer agents. The aim of this work was to quantify and compare polyphenolic content and free radical scavenging activity of algal extracts using normal phase and reverse phase thin layer chromatography. Post-chromatographic derivatization with neutral ferric chloride (FeCl3) solution and with 2,2-diphenyl-1-picrylhydrazyl (DPPH·) free radical were used to assess total polyphenolic content and free radical scavenging activities in algal samples. Total phenolic content quantified on normal phase plates was correlated to phenolic content established on reverse phase plates. Similarly, free radical scavenging activity established on normal phase and reverse phase plates were in good agreement. However, although free radical scavenging activities determined on normal phase plates were highly correlated with polyphenolic content, this correlation was low for reverse phase plates. Lipophilic reversed phase TLC plates do not effectively separate mixtures of highly polar compounds like flavonoids, phenolic compounds and their glucosides. Thus, although reversed phase plates are recommended for assessment of free radical scavengers, as they do not influence the free radical-antioxidant reaction, they may not provide the best separation of polar phenolic compounds, especially flavonoids, and therefore may not accurately quantify polyphenolic content and free radical scavenging potential.  相似文献   

16.
Abstract

Glaucoma is the leading cause of irreversible blindness in industrialized countries and comprises a group of diseases characterized by progressive optic nerve degeneration. Glaucoma is commonly associated with elevated intraocular pressure due to impaired outflow of aqueous humor resulting from abnormalities within the drainage system of the anterior chamber angle (open-angle glaucoma) or impaired access of aqueous humor to the drainage system (angle-closure glaucoma). Oxidative injury and altered antioxidant defense mechanisms in glaucoma appear to play a role in the pathophysiology of glaucomatous neurodegeneration that is characterized by death of retinal ganglion cells. Oxidative protein modifications occurring in glaucoma serve as immunostimulatory signals and alter neurosupportive and immunoregulatory functions of glial cells. Initiation of the apoptotic cascade observed in glaucomatous retinopathy can involve oxidant mechanisms and different agents have been shown to be neuroprotective. This review focuses on the molecular mechanisms of oxidant injury and summarizes studies that have investigated novel free radical scavengers in the treatment of glaucomatous neurodegeneration.  相似文献   

17.
Summary Rat hepatocytes were isolated and then maintained in serum-free cell culture medium for 24 h. The amount of malondialdehyde (MDA) accumulated in the medium was assayed and used as a measure of lipid peroxidation. The acivity of lactate dehydrogenase (LDH) and urea were measured in the medium and used as indicators of hepatocellular viability and function. The effects of iron; desferrioxamine mesylate (Desferal), an iron chelator; and mannitol, a hydroxyl free radical scavenger were investigated. The addition of iron, Fe2 resulted in a three-fold increase in the levels of MDA. Desferal inhibited the production of MDA and blocked the effect of Fe2+. Neither iron nor Desferal had any effect on LDH or urea levels. Mannitol had no effect on MDA or urea production, but caused a 4 to 8-fold increase in the LDH levels in the medium. The results show that iron is involved in the mechanism of lipid peroxidation in hepatocyte cultures but suggest that as a pathologic event lipid peroxidation is not expressed in terms of viability during the first 24 h of hepatocyte culture.  相似文献   

18.
To investigate the mechanisms of radiation-induced chromosomal instability, cells were irradiated in the presence of the free radical scavengers DMSO, glycerol, or cysteamine, in the presence of DMSO while frozen, or held in confluence arrest post-irradiation to permit cells to repair potentially lethal DNA damage. Clones derived from single progenitor cells surviving each treatment were then analyzed for the subsequent development of chromosomal instability. The presence of scavengers (+/- freezing) during irradiation, and the recovery from potentially lethal damage after irradiation led to an increase in cell survival that was accompanied by a decrease in the initial yield of chromosomal rearrangements. Furthermore, analysis of over 400 clones and 80,000 metaphases indicates that these same treatments reduced the incidence of instability at equitoxic doses when compared to controls irradiated in the absence of scavengers at ambient temperature. Results suggest that preventing reactive species from damaging DNA, promoting chemical repair of ionized DNA intermediates, or allowing enzymatic removal of genetic lesions, represent measures that reduce the total burden of DNA damage and reduce the subsequent onset of radiation-induced genomic instability.  相似文献   

19.
20.
Retinol, a morphogen, has been shown to induce morphological changes in vascular endothelial cells, accompanied by an acute and specific accumulation of an 80-kDa protein; purification and characterization of this retinol-induced protein (RIP) have revealed that it is a transglutaminase. Endothelial cells from bovine carotid artery were cultured, treated with retinol, and examined for changes in morphology and protein profiles. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of extracts prepared from retinol-treated cells which had undergone a remarkable change in shape (from a cobblestone-like to a spindle-like shape) indicated that the retinol-induced morphological change is accompanied by a marked increase of an 80-kDa protein. Similar changes were also induced by retinoic acid. The 80-kDa RIP was purified by anion exchange and hydroxyapatite column chromatography. Amino acid sequencing of tryptic fragments of the purified RIP revealed a high degree of homology between the sequence of bovine RIP and that of guinea pig liver transglutaminase, suggesting that RIP is a transglutaminase. This was confirmed by activity measurements; RIP exhibited transglutaminase activity, and an antiserum against RIP immunoprecipitated the activity. These results suggest that transglutaminase plays important roles in the maintenance of morphology and the control of endothelial cell functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号