首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BACKGROUND: High transgene expression is generally expected after gene transfer. However, different level, kinetics and localization of expression might be needed for relevant therapeutic applications. Former studies have compared various promoter regions driving gene expression leading to conflicting results. In the present work, two promoter families have been compared using the efficient in vivo intramuscular electrotransfer technique. METHODS: Three promoter regions were constructed by associating the strong ubiquitous cytomegalovirus (CMV) enhancer-promoter to its homologous intron A or to a heterologous intron, or to a hybrid intron. Promoter regions derived from the muscle creatine kinase (MCK) promoter were also studied. The expression of the same transgene (SeAP or neurotrophin-3) under control of these different promoters was compared after plasmid electrotransfer in mouse tibialis-cranialis skeletal muscle. RESULTS: Heterologous intron association to the CMV promoter did not modify gene expression kinetics nor increase gene expression level. Usefulness of intron A or hybrid intron association to the CMV promoter depended on the gene. The various MCK promoters drove efficient gene expression but lower than that obtained with the CMV promoter. Furthermore, peak value was reached earlier with MCK promoter regions (14 days). CONCLUSION: For applications of gene transfer restricted to skeletal muscle, the MCK promoter or a MCK promoter variant would be a promising alternative to the CMV promoter. Indeed, it has been demonstrated that the use of MCK promoter limits humoral and cell-mediated immune responses. Furthermore, the MCK promoter decreases the initial expression peak that may be detrimental, drives a sustained gene expression, and improves gene transfer safety.  相似文献   

3.
4.
Gene delivery to skeletal muscle is a promising strategy for the treatment of muscle disorders and for the local or systemic secretion of therapeutic proteins. However, current DNA delivery technologies have to be improved. We report very efficient luciferase gene transfer into muscle fibres obtained through the delivery of squarewave electric pulses of moderate field strength (100–200 V/cm) and of long duration (20 ms) to muscle previously injected with plasmid DNA. This intramuscular ‘electrotransfer’ method increases reporter gene expression by more than 100 times. It is noteworthy that this expression remains high and stable for at least 9 months. Moreover, intramuscular electrotransfer strongly decreases the interindividual variability usually observed after plasmid DNA injection into muscle fibres. Therefore, DNA electrotransfer in muscle possesses broad potential applications in gene therapy and for physiological, pharmacological and developmental studies.  相似文献   

5.
CD80 is a very potent co-stimulatory factor which is required for complete T-cell activation. Here, we use transgenic mice as a tool to map the promoter of the CD80 gene. We engineered three different CD80 promoter driven luciferase transgenes: -3084, -1073 and -215. With these transgenes, we have generated three groups of transgenic mice. Our results showed that the -3084 CD80 promoter/luciferase transgene was sufficient to confer tissue-specific expression of the CD80 gene. When the promoter sequence was deleted to -1073, the normal tissue-specific expression was lost. A brain-specific element was mapped between -1073 nt and -215 nt. This element caused up to ninefold higher expression of the CD80 promoter/luciferase in brain tissue of -1073 CD80 promoter/luciferase transgenic animals as compared to -3084 CD80 promoter/luciferase transgenic animals. In contrast to results with a cell culture system, little luciferase activity was detected in -215 CD80 promoter/luciferase transgenic animals.  相似文献   

6.
Experimental results have suggested that transgene expression can be saturated when large amounts of plasmid vectors are delivered into cells. To investigate this saturation kinetic behavior, cells were transfected with monitoring and competing plasmids using cationic liposomes. Even although an identical amount of a monitoring plasmid expressing firefly luciferase (FL) was used for transfection, transgene expression from the plasmid was greatly affected by the level of transgene expression from competing plasmids expressing renilla luciferase (RL). Similar results were obtained by exchanging the monitoring and competing plasmids. The competing plasmid‐dependent reduction in transgene expression from the monitoring plasmid was also observed in mouse liver after hydrodynamic injection of plasmids. On the other hand, the mRNA and protein expression level of glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH), an endogenous gene, in the liver hardly changed even when transgene expression process is saturated. The expression of FL from a monitoring plasmid was significantly restored by siRNA‐mediated degradation of RL mRNA that was expressed from a competing plasmid. These results suggest that the efficiency of protein synthesis from plasmid vectors is reduced when a large amount of mRNA is transcribed with no significant changes in endogenous gene expression. Biotechnol. Bioeng. 2011;108: 2380–2389. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
8.
小鼠白蛋白是肝组织特异性表达的蛋白 ,这种特异性是由白蛋白启动子所介导的 .以2 2 35A- 1质粒为模板 ,通过 PCR扩增获得小鼠白蛋白启动子 /增强子基因片段 ,用小鼠白蛋白启动子 /增强子基因片段取代 p HCV- neo4质粒 (含 HCV5′NCR调控荧光素酶基因 )的 CMV启动子 ,构建了一种白蛋白启动子启动转录的 HCV5′NCR调控荧光素酶表达质粒 (p A1 b- HCV) .该质粒能在小鼠肝癌细胞中表达且较小鼠其它癌细胞中表达水平明显增高 ,表明成功地构建了肝特异性表达的 HCV5′NCR调控荧光素酶表达质粒 .该研究为建立肝特异性表达的 HCV5′NCR转基因小鼠模型奠定了基础 ,对评价 HCV特异性反义药物及肝靶向性运载系统的作用具有重要的实际意义  相似文献   

9.
10.
Bacterial infections represent serious diseases in aquaculture, rapidly leading to fish death by septicemia. We investigated whether the electrotransfer of green fluorescent protein gene fusion epinecidin-1 (CMV-gfp-epi) DNA into zebrafish muscle could regulate the fish immune response and inhibit bacterial growth. Electroporation parameters such as the number of pulses, voltage, and amount of plasmid DNA were analyzed, and results demonstrated the greatest mRNA expression level of gfp-epi relative to β-actin was obtained with a pulse number of 4, a voltage strength of 100 V/cm, a concentration of DNA of 90 μg/fish, and electroporation for 96 h. In addition, the cytomegalovirus (CMV) promoter exhibited higher activity compared to the mylz promoter in muscle for electrotransfer in zebrafish. GFP fluorescence and gfp-epi mRNA expression in tissues after electroporation were also studied by a polymerase chain reaction, immunohistochemistry, and fluorescence microscopy. gfp-epi expression was significantly correlated with decreased bacterial numbers and immune-related gene expression. These data demonstrate that electroporation of epinecidin-1 might have provoked an inflammatory response that accounts for the improvement in bacterial clearance.  相似文献   

11.
12.
13.
Molecular mechanisms directing tissue-specific expression of gonadotropin-releasing hormone (GnRH) are difficult to study due to the paucity and scattered distribution of GnRH neurons. To identify regions of the mouse GnRH (mGnRH) promoter that are critical for appropriate tissue-specific gene expression, we generated transgenic mice with fragments (-3446/+23 bp, -2078/+23 bp, and -1005/+28 bp) of mGnRH promoter fused to the luciferase reporter gene. The pattern of mGnRH promoter activity was assessed by measuring luciferase activity in tissue homogenates. All three 5'-fragments of mGnRH promoter targeted hypothalamic expression of the luciferase transgene, but with the exception of the ovary, luciferase expression was absent in non-neural tissues. High levels of ovarian luciferase activity were observed in mice generated with both -2078 and -1005 bp of promoter. Our study is the first to define a region of the GnRH gene promoter that directs expression to both neural and non-neural tissues in vivo. We demonstrate that DNA sequences contained within the proximal -1005 bp of the mGnRH promoter are sufficient to direct mGnRH gene expression to both the ovary and hypothalamus. Our results also suggest that DNA sequences distal to -2078 bp mediate the repression of ovarian GnRH.  相似文献   

14.
To selectively introduce genes into the mouse myocardium, we used a recombinant adenovirus encoding a transgene composed of a cardiac-specific promoter [the proximal human brain natriuretic peptide (hBNP) promoter] coupled to a luciferase reporter gene (Ad.hBNPLuc). Activity in vitro and in vivo was compared with Ad.CMVLuc, which contained the cytomegalovirus (CMV) enhancer/promoter. We tested cell-specific and inducible regulation of Ad.hBNPLuc in vitro. Expression was higher in neonatal cardiac myocytes than in a fibroblast cell line and was induced by interleukin-1beta, phenylephrine, and isoproterenol in myocytes. For in vivo experiments, Ad.hBNPLuc, Ad.CMVLuc, or vehicle was injected into the left ventricular (LV) free wall of the mouse heart. In Ad.hBNPLuc-injected mice, luciferase activity was only detected in the heart. In contrast, Ad.CMVLuc-injected mice had detectable luciferase activity in all tissues examined. Our studies indicate that 1) the cardiac-specific hBNP promoter and direct cardiac injection limit expression of the transgene to the LV free wall; and 2) transgene expression in vitro is inducible and cardiac myocyte specific. Thus the use of the proximal hBNP promoter in recombinant adenoviral vectors may allow cardiac-specific and inducible expression of therapeutic genes in vivo and prevent some of the side effects of systemic adenovirus administration.  相似文献   

15.
Neuron-restrictive silencer elements (NRSEs) were used to target the gene expression of adenoviral vectors specifically to neuron cells in the central nervous system. By generating adenoviral constructs in which NRSE sequences were placed upstream from the ubiquitous phosphoglycerate kinase promoter, the specificity of expression of a luciferase reporter gene was tested in both cell lines and primary cultures. Whereas transgene expression was negligible in nonneuronal cells following infection with an adenovirus containing 12 NRSEs, neuronal cells strongly expressed luciferase when infected with the same adenovirus. The NRSEs restricted expression of the luciferase gene to neuronal cells in vivo when adenoviruses were injected both intramuscularly into mice and intracerebrally into rats. This NRSE strategy may avoid side effects resulting from the ectopic expression of therapeutic genes in the treatment of neurological diseases. In particular, it may allow the direct transfection of motor neurons without promoting transgene expression within inoculated muscles or the secretion of transgene products into the bloodstream.  相似文献   

16.
In vivo electrotransfer is a physical method of gene delivery in various tissues and organs, relying on the injection of a plasmid DNA followed by electric pulse delivery. The importance of the association between cell permeabilization and DNA electrophoresis for electrotransfer efficiency has been highlighted. In vivo electrotransfer is of special interest since it is the most efficient non-viral strategy of gene delivery and also because of its low cost, easiness of realization and safety. The potentiality of this technique can be further improved by optimizing plasmid biodistribution in the targeted organ, plasmid structure, and the design of the encoded protein. In particular, we found that plasmids of smaller size were electrotransferred more efficiently than large plasmids. It is also of importance to study and understand kinetic expression of the transgene, which can be very variable, depending on many factors including cellular localization of the protein, physiological activity and regulation. The most widely targeted tissue is skeletal muscle, because this strategy is not only promising for the treatment of muscle disorders, but also for the systemic secretion of therapeutic proteins. Vaccination and oncology gene therapy are also major fields of application of electrotransfer, whereas application to other organs such as liver, brain and cornea are expanding. Many published studies have shown that plasmid electrotransfer can lead to long-lasting therapeutic effects in various pathologies such as cancer, blood disorders, rheumatoid arthritis or muscle ischemia. DNA electrotransfer is also a powerful laboratory tool to study gene function in a given tissue.  相似文献   

17.
BACKGROUND: Gene therapy applications require safe and efficient methods for gene transfer. Present methods are restricted by low efficiency and short duration of transgene expression. In vivo electroporation, a physical method of gene transfer, has evolved as an efficient method in recent years. We present a protocol involving electroporation combined with a long-acting promoter system for gene transfer to the lung. METHODS: The study was designed to evaluate electroporation-mediated gene transfer to the lung and to analyze a promoter system that allows prolonged transgene expression. A volume of 250 microl of purified plasmid DNA suspended in water was instilled into the left lung of anesthetized rats, followed by left thoracotomy and electroporation of the exposed left lung. Plasmids pCiKlux and pUblux expressing luciferase under the control of the cytomegalovirus immediate-early promoter/enhancer (CMV-IEPE) or human polyubiquitin c (Ubc) promoter were used. Electroporation conditions were optimized with four pulses (200 V/cm, 20 ms at 1 Hz) using flat plate electrodes. The animals were sacrificed at different time points up to day 40, after gene transfer. Gene expression was detected and quantified by bioluminescent reporter imaging (BLI) and relative light units per milligram of protein (RLU/mg) was measured by luminometer for p.Pyralis luciferase and immunohistochemistry, using an anti-luciferase antibody. RESULTS: Gene expression with the CMV-IEPE promoter was highest 24 h after gene transfer (2932+/-249.4 relative light units (RLU)/mg of total lung protein) and returned to baseline by day 3 (382+/-318 RLU/mg of total lung protein); at day 5 no expression was detected, whereas gene expression under the Ubc promoter was detected up to day 40 (1989+/-710 RLU/mg of total lung protein) with a peak at day 20 (2821+/-2092 RLU/mg of total lung protein). Arterial blood gas (PaO2), histological assessment and cytokine measurements showed no significant toxicity neither at day 1 nor at day 40. CONCLUSIONS: These results provide evidence that in vivo electroporation is a safe and effective tool for non-viral gene delivery to the lungs. If this method is used in combination with a long-acting promoter system, sustained transgene expression can be achieved.  相似文献   

18.
Multipotent mesenchymal stem cells (MSCs) can undergo self-renewal and give rise to multi-lineages under given differentiation cues. It is frequently desirable to achieve a stable and high level of transgene expression in MSCs in order to elucidate possible molecular mechanisms through which MSC self-renewal and lineage commitment are regulated. Retroviral or lentiviral vector-mediated gene expression in MSCs usually decreases over time. Here, we choose to use the piggyBac transposon system and conduct a systematic comparison of six commonly-used constitutive promoters for their abilities to drive RFP or firefly luciferase expression in somatic HEK-293 cells and MSC iMEF cells. The analyzed promoters include three viral promoters (CMV, CMV-IVS, and SV40), one housekeeping gene promoter (UbC), and two composite promoters of viral and housekeeping gene promoters (hEFH and CAG-hEFH). CMV-derived promoters are shown to drive the highest transgene expression in HEK-293 cells, which is however significantly reduced in MSCs. Conversely, the composite promoter hEFH exhibits the highest transgene expression in MSCs whereas its promoter activity is modest in HEK-293 cells. The reduced transgene expression driven by CMV promoters in MSCs may be at least in part caused by DNA methylation, or to a lesser extent histone deacetlyation. However, the hEFH promoter is not significantly affected by these epigenetic modifications. Taken together, our results demonstrate that the hEFH composite promoter may be an ideal promoter to drive long-term and high level transgene expression using the piggyBac transposon vector in progenitor cells such as MSCs.  相似文献   

19.
20.
Heitzer M  Zschoernig B 《BioTechniques》2007,43(3):324, 326, 328 passim
The successful expression of foreign genes mainly depends on both a reliable method for transformation and a suitable promoter sequence. We created a series of modular plasmids that facilitate the rapid construction of large tandem vectors for transgene expression under the control of different promoter sequences in Chlamydomonas reinhardtii. Tandem vectors carrying expression cassettes for Renilla luciferase and a metabolic selection marker (ARG7) were manufactured by fusing two plasmids in vitro using Cre/lox site-specific recombination. Supercoiled and linear plasmids were used to transform an arginine auxotrophic Chlamydomonas strain, and rates of co-expression as well as levels of luciferase activity were monitored for frequently used promoters (HSP70A, LHCB1, PSAD, and the chimeric HSP70A/RBCS2). Linearized tandem vectors generally increased the co-expression frequency (up to 77%) compared with standard cotransformation protocols. Most transformants showed a single and complete integration event confirming the close linkage of active selectable marker and reporter gene within the nuclear genome. The analysis of luciferase activity showed expression levels within three orders of magnitude for the promoters used, with the artificial HSP70A/RRBCS2 being the most active. For 69% of all luminescent transformants carrying the HSP70A promoter luciferase expression was enhanced by heatshock, indicating physiological promoter function in a transgenic context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号