首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate the relationship between immune suppression and host range six lepidopteran species were parasitized by the ichneumonid parasitoid Campoletis sonorensis. Parasitism inhibited the growth of permissive hosts (Heliothis virescens, Helicoverpa zea, and Trichoplusia ni), whereas growth of semi-permissive (Spodoptera exigua, Agrotis ipsilon) and non-permissive hosts (Manduca sexta) was not significantly affected. The 29-36 kDa ovarian protein (OP), responsible for transient immunosuppression in the permissive host H. virescens, bound to and was endocytosed by hemocytes of permissive and non-permissive hosts. Expression of the cysteine-rich polydnavirus gene, VHv1.4, was detected in all the hosts, but declined only in semi- and non-permissive hosts at later times after parasitization. The VHv1.4 protein bound to hemocytes of permissive and semi-permissive hosts, but did not bind to hemocytes of the non-permissive host, M. sexta. Melanization of larval hemolymph was severely inhibited by parasitism in permissive hosts, but was unaffected in M. sexta. In the semi-permissive host, A. ipsilon, hemolymph melanization was transiently inhibited while viral genes were expressed. In conclusion, C. sonorensis OP transiently inhibits encapsulation in all hosts that were tested. The host range of C. sonorensis seems to be determined by whether or not the C. sonorensis ichnovirus (CsIV) is able to establish persistent infections of parasitized larvae to provide long-term suppression of host immunity.  相似文献   

2.
Polydnaviruses are obligate symbionts of some parasitic hymenopteran wasps responsible for modifying the physiology of their host lepidopteran larvae to benefit the endoparasite. Injection of Campoletis sonorensis ichnovirus (CsIV) into Heliothis virescens larvae alters larval growth, development and immunity but genes responsible for alterations of host physiology are not well described. Recent studies of polydnavirus genomes establish that these genomes encode families of related genes expressed in parasitized larvae. Here we evaluate five members of the CsIV cys-motif gene family for their ability to inhibit growth and development of lepidopteran larvae. To study the function of cys-motif proteins, recombinant proteins were produced from baculovirus expression vectors and injected or fed to H. virescens larvae in diet. rVHv1.1 was identified as the most potent protein tested causing a significant reduction in growth of H. virescens and Spodoptera exigua larvae. H. virescens larvae ingesting this protein also exhibited delayed development, reductions in pupation and increased mortality. Increased mortality was associated with chronic sub-lethal baculovirus infections. Taken together, these data indicate that the cys-motif proteins have pleiotropic effects on lepidopteran physiology affecting both development and immunity.  相似文献   

3.
J Einerwold  M Jaseja  K Hapner  B Webb  V Copié 《Biochemistry》2001,40(48):14404-14412
Polydnaviruses are an unusual group of insect viruses that have an obligate symbiotic association with certain parasitic wasps. These viruses are transmitted with the wasp egg during oviposition into lepidopteran insects, enabling the survival and development of the egg inside the host larvae. We report the three-dimensional structure of a novel polydnaviral cysteine-rich motif (cys-motif), identified as the carboxyl-terminal domain of a two cys-motif containing polydnaviral VHv1.1 gene product, abbreviated "C-term VHv1.1". This 65-residue domain was identified experimentally by limited proteolysis of the full-length protein and was subsequently cloned in a bacterial expression system for NMR studies. The C-term VHv1.1 3D structure was determined in solution by two-dimensional (1)H NMR spectroscopy. Calculation of the structure was based on a total of 300 upper distance restraints and 20 dihedral angle constraints, and resulted in an ensemble of 25 representative conformers with an average rmsd of 0.47 A from the mean structure for core backbone atoms. The protein core is made of a four beta-strand scaffold held together in a compact structure by three disulfide bonds, which form a cystine knot. The four beta-strands are arranged in an unusual configuration to form a triple-stranded beta-sheet and double-stranded beta-sheet. Comparison with other classes of cystine knots provides indication that C-term VHv1.1 represents a new and distinct cystine knot motif. This analysis provides a structural basis for interpretation of the genetic and amino acid sequence data classifying polydnavirus gene products as members of cysteine-rich protein families.  相似文献   

4.
5.
6.
During parasitization of their hosts some insect parasitoids deliver resident viruses which encode genes that must be expressed in the host for successful parasitization. Among these viruses the Campoletis sonorensis Ichnovirus has been well studied and encodes a cys-motif gene family implicated in disruption of host immunity and other physiological systems. Members of this gene family encode one or more intercystine-knot structural motifs in which the non-cysteine residues of the motif are variable. We analyzed patterns of synonymous and non-synonymous substitution within the cys-motif to investigate the evolution of this gene family and the likelihood of virus-host gene coevolution. Maximum likelihood techniques suggest positive selection acts on 8 of 51 codons in the aligned cysteine-rich region. Although the detected positive selection was not strong, it likely contributes to the diversification of this gene family. Comparison of selection pressure relative to tertiary structure of the VHv1.1 cys-motif protein suggests that the hypervariable sites are exposed. Furthermore, invariant residues in the motif exhibit a region-specific pattern of codon bias, suggesting there are unusual mechanisms of effecting selection pressure at work in this system, though the mechanism has yet to be studied. The positive selection and duplication of both the gene family and the cys-motif implies either selection is driving the molecular radiation of immune suppressive genes toward novel hosts, or molecular coevolution with host targets.Novel nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers AY033945, AY197489, AY197490, AY197491, AY197492, AY197493 and AY197494  相似文献   

7.
Polydnaviruses are double-stranded DNA viruses associated with some subfamilies of ichneumonoid parasitoid wasps. Polydnavirus virions are delivered during wasp parasitization of a host, and virus gene expression in the host induces alterations of host physiology. Infection of susceptible host caterpillars by the polydnavirus Campoletis sonorensis ichnovirus (CsIV) leads to expression of virus genes, resulting in immune and developmental disruptions. CsIV carries four homologues of insect gap junction genes (innexins) termed vinnexins, which are expressed in multiple tissues of infected caterpillars. Previously, we demonstrated that two of these, VinnexinD and VinnexinG, form functional gap junctions in paired Xenopus oocytes. Here we show that VinnexinQ1 and VinnexinQ2, likewise, form junctions in this heterologous system. Moreover, we demonstrate that the vinnexins interact differentially with the Innexin2 orthologue of an ichnovirus host, Spodoptera frugiperda. Cell pairs coexpressing a vinnexin and Innexin2 or pairs in which one cell expresses a vinnexin and the neighboring cell Innexin2 assemble functional junctions with properties that differ from those of junctions composed of Innexin2 alone. These data suggest that altered gap junctional intercellular communication may underlie certain cellular pathologies associated with ichnovirus infection of caterpillar hosts.  相似文献   

8.
Parasitism-linked block of host plasma melanization   总被引:3,自引:0,他引:3  
When parasitized by the Ichneumonid parasitoid Campoletis sonorensis, larvae of the Noctuid moth, Heliothis virescens, are unable to mount an effective immune response against parasitoid eggs. Defensive melanization of plasma and cellular encapsulation of parasite eggs are dramatically inhibited by infection with the symbiotic immunosuppressive C. sonorensis ichnovirus (CsIV). This study demonstrates that the CsIV-mediated inhibition of melanization is associated with reduction in the enzymatic activity and protein titer of key enzymes in the melanization pathway, phenoloxidase, dopachrome isomerase, and DOPA decarboxylase. Inhibition of the synthesis of key melanization enzymes leads to reductions in the melanization substrates l-dihydroxyphenylalanine, N-acetyldopamine, and N-beta-alanyl dopamine from millimolar to nanomolar levels in parasitized larvae. By contrast, concentration of a precursor catecholamine, dopamine, rises fourfold in these larvae. Thus in CsIV-infected larvae, enzymatic deficiencies in the melanization pathway lead to reduced concentrations of specific enzyme substrates, causing failure of melanization in parasitized insects.  相似文献   

9.
10.
11.
12.
13.
The polydnavirus associated with the parasitic wasp Campoletis sonorensis is injected into the lepidopteran insect, Heliothis virescens, during parasitization, after which viral gene products suppress the cellular immune system of the hosts. Four related cysteine-rich polydnavirus genes have been identified in parasitized H. virescens larvae and grouped into a family. In this study, we investigated the expression and hemocyte targeting of the cysteine-rich Vhv1.4 protein. Full- length and truncated Vhv1.4 proteins were produced in a bacterial expression system, and the purified proteins were used to raise polyclonal antisera. In immunoblots the Vhv1.4 protein was detected in parasitized insects as early as 6 h and throughout the entire course of parasitism. The Vhv1.4 protein appeared predominantly in the plasma fraction of hemolymph from parasitized larvae, suggesting that this protein is secreted. The Vhv1.4 protein expressed from a recombinant baculovirus was secreted in two lepidopteran cell lines and in larvae injected with the recombinant virus. Digestion with endoglycosidases suggests that the Vhv1.4 protein is glycosylated at multiple N-glycosylation sites. Immunofluorescence assays showed that the Vhv1.4 protein binds to the hemocytes, most notably the granulocytes, in H. virescens larvae. After binding, the Vhv1.4 protein was internalized, probably by endocytosis. Specific binding of the Vhv1.4 to granulocytes implies an important function in the suppression of host cellular encapsulation response. Arch. Insect Biochem. Physiol. 36:251–271, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
《Journal of Asia》2007,10(4):351-356
Polydnavirus is a DNA virus symbiotic to some endoparasitic wasps and plays a critical role in accomplishing successful parasitic life cycle of host wasps. Host translation inhibitory factor (HTIF) has been found in some polydnaviral genomes and performs parasitic functions leading to host immunosuppression and redirecting host nutrient usage to wasp development. The cabbage white butterfly, Pieris rapae, parasitized by a gregarious endoparasitoid, Cotesia glomerata, undergoes several physiological alterations including immune malfunctioning and failure of pupal metamorphosis. C. glomerata possesses its own symbiotic polydnavirus, C. glomerata bracovirus (CgBV). Its genome consisted of at least 12 segments in unequal amounts. Parasitized P. rapae hemolymph contained HTIF-like protein, which was determined through an immunoblotting assay using HTIF antibody of C. plutellae bracovirus (CpBV). RT-PCR using HTIF primers of CpBV produced an HTIF-like gene in P. rapae larvae parasitized by C. glomerata. Also, this HTIF-like gene was encoded in CgBV genome and its partial sequence of CgBV showed highly homology (98.5%) to amino acid sequence of an HTIF of CpBV, called CpBV15a. These results suggest that a common HTIF-like moiety may be shared among Cotesia-associated bracovirus.  相似文献   

15.
An endoparasitoid, Cotesia plutellae (Hymenoptera: Braconidae), possesses a mutualistic bracovirus (CpBV), which plays significant roles in the parasitized host, Plutella xylostella (Lepidoptera: Plutellidae). CpBV15beta, a viral gene encoded by CpBV, is expressed at early and late parasitization periods, suggesting that it functions to manipulate the physiology of the parasitized host. This paper reports a physiological function of CpBV15beta as an immunosuppressive agent. The effect of CpBV15beta on cellular immunity was analyzed by assessing hemocyte-spreading behavior. Parasitization by C. plutellae caused altered behavior of hemocytes of P. xylostella, in which the hemocytes were not able to attach and spread on glass slides. CpBV15beta was expressed in Sf9 cells using a baculovirus expression system and purified from the culture media. When hemocytes of nonparasitized P. xylostella were incubated with purified CpBV15beta protein, spreading behavior was impaired in a dose-dependent manner at low micro-molar range. This inhibitory effect of CpBV15beta could also be demonstrated on hemocytes of a non-natural host, Spodoptera exigua. CpBV15beta protein significantly inhibited F-actin growth of hemocytes in response to an insect cytokine. Similarly, cycloheximide, a eukaryotic translation inhibitor, strongly inhibited the spreading behavior and F-actin growth of P. xylostella hemocytes. Under in vitro condition, hemocytes of nonparasitized P. xylostella released proteins into the surrounding medium. Upon incubation of hemocytes with either CpBV15beta or cycloheximide, their ability to release protein molecules was markedly inhibited. This study suggests that CpBV15beta suppresses hemocyte behavior by inhibiting protein translation.  相似文献   

16.
17.
The genomic sequence of the bracovirus associated with the wasp Toxoneuron nigriceps (Hymenoptera, Braconidae) (TnBV), an endophagous parasitoid of the tobacco budworm larvae, Heliothis virescens (Lepidoptera, Noctuidae), contains a large gene family coding for protein tyrosine phosphatases (PTPs). Here we report the characterization of cDNAs for two of the viral PTPs isolated by screening a cDNA library from haemocytes of parasitized host larvae. The two encoded proteins show 70% amino acid identity and are expressed in the fat body of parasitized hosts. In addition, one was expressed in inactivated prothoracic glands (PTGs), 24 h after parasitoid oviposition. The rapid block of ecdysteroidogenesis does not appear to be due to inhibition of general protein synthesis, as indirectly indicated by the unaltered S6 kinase activity in the cytosolic extracts of basal PTGs from parasitized host larvae. Rather, TnBV PTP over-expression in inactivated host PTGs suggests that gland function may be affected by the disruption of the phosphorylation balance of key proteins regulating points upstream from the ribosomal S6 phosphorylation in the PTTH signaling cascade.  相似文献   

18.
Microplitis croceipes wasps overcome host immunity by inducing changes in host physiology using factors derived from the embryo and/or larva. Teratocytes of some parasitic wasps circulate in the host hemolymph after egg hatch and synthesize proteins (TSPs), some of which are secreted to alter host physiology in support of endoparasitoid development. TSPs appear to alter host physiology, at least in part, by inhibiting synthesis of certain proteins. M. croceipes teratocytes synthesize a 13.9 kDa protein (TSP14), which inhibits synthesis of host proteins that are linked to larval growth and development. A cDNA encoding TSP14 was generated by RT-PCR from teratocyte RNA, and cloned into yeast expression vectors to produce sufficient recombinant protein for functional analyses. RecTSP14 was produced using the yeast expression system at a concentration of more than 300 micrograms/L. The recTSP14 inhibited in vitro translation of larval Heliothis virescens RNA, with the activity sensitive to boiling, protein concentration, incubation time, and storage temperatures. Although recTSP14 inhibited translation of some cellular RNAs in vitro, the in vivo incorporation of [35S]-methionine into proteins of selected insect and mammalian cell lines was not inhibited. These findings suggest that recTSP14 entry is cell type-specific and required to inhibit synthesis of target protein(s).  相似文献   

19.
20.
The diamondback moth, Plutella xylostella, parasitized by its endoparasitoid wasp, Cotesia plutellae, undergoes various physiological alterations which include immunosuppression and an extended larval development. Its symbiotic virus, C. plutellae bracovirus (CpBV), is essential for their successful parasitization with more than 136 putative genes encoded in the viral genome. CpBV15β, a CpBV gene, has been known to play significant role in altering host physiological processes including hemocyte-spreading behavior through inhibition of protein synthesis under in vitro conditions. In the current study, we investigated its specific involvement in physiological processes of the host by transient expression and RNA interference techniques. The open reading frame of CpBV15β was cloned into a eukaryotic expression vector and this recombinant CpBV15β was transfected into nonparasitized 3rd instar P. xylostella by microinjection. CpBV15β was expressed as early as 24 h and was consistent up to 72 h. Due to the expression of this gene, plasma protein levels were significantly reduced and the ability of the hemocytes to adhere and spread on extracellular matrix was inhibited, wherein CpBV15β was detectable in the cytoplasm of hemocytes based on an indirect immunofluorescence assay. To confirm the role of CpBV15β, its double stranded RNA could efficiently recover the hemocyte-spreading behavior and synthesis of plasma proteins suppressed by the transient expression of CpBV15β. In addition, the larvae transfected with CpBV15β significantly suffered poor adult development probably due to lack of storage proteins. Thus these results demonstrate the role of CpBV15β in altering the host physiological processes involving cellular immune response and metamorphic development, which are usually induced by wasp parasitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号