首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we explain an often overlooked process that may significantly contribute to positive correlations between measures of species diversity and community stability. Empirical studies showing positive stability-diversity relationships have, for the most part, used a single class of stability (or, more accurately, instability) measures: the temporal variation in aggregate community properties such as biomass or productivity. We show that for these measures, stability will essentially always rise with species diversity because of the statistical averaging of the fluctuations in species' abundances. This simple probabilistic process will operate in the absence of any strong species interactions, although its strength is driven by the relative abundances of species, as well as by the existence of positive or negative correlations in the fluctuations of species. To explore the possible importance of this effect in real communities, we fit a simple simulation model to Tilman's grassland community. Our results indicate that statistical averaging might play a substantial role in explaining stability-diversity correlations for this and other systems. Models of statistical averaging can serve as a useful baseline for predictions of community stability, to which the influences of both negative and positive species interactions may then be added and tested.  相似文献   

2.
Anthropogenic influences have disproportionally affected freshwater ecosystems, and a loss of biodiversity is forecasted to greatly reduce ecosystem function and services. Loss of species may destabilize communities by limiting the stabilizing forces of compensatory dynamics and/or statistical averaging, both of which are effects that can buffer variation in aggregate community properties. Currently, support for positive diversity‐stability relationships stems from experiments with simple communities at small spatial and temporal scales, and application to natural communities is limited. Using a long‐term dataset of 35 stream fish communities matched with hydrologic data, we show that community stability (annual variation of standing biomass of fishes) was less variable in more species‐rich communities and was not associated with stream hydrology. Only the statistical averaging model of community stability was consistent with observed patterns of lower biomass variation in more species‐rich communities. Our findings suggest anthropogenically induced extirpation of vertebrate consumers may lower community biomass stability in complex ecosystems.  相似文献   

3.
植物群落中不同“功能身份”物种的多样性与特定生态系统功能之间具有何种关系及其作用机制尚不明确。通过在高寒矮嵩草(Kobresia humilis)草甸为期5年的刈割(不刈割、留茬3 cm、留茬1 cm)、施肥(施肥、不施肥)和浇水(浇水、不浇水)控制实验, 研究了刈割与土壤资源获得性梯度上不同“功能身份”物种(群落中所有物种、响应物种、作用物种和共有物种)的多样性变化与群落地上净初级生产力和稳定性的关系以及稳定性机制。研究结果显示: 群落中响应物种、作用物种和共有物种数分别占全部物种数的36.6%、18.3%和64.8%, 物种多样性对生态系统功能具有不同的效应, 净初级生产力主要受响应物种和作用物种的多样性变化影响, 而稳定性则主要由共有物种的多样性变化决定; 群落稳定性的维持主要依赖于共有物种的多样性增加, 其作用机制是投资组合效应, 而超产效应和异步性效应对稳定性并无作用; 刈割和施肥对物种多样性、稳定性和净初级生产力具有相反的影响, 前者能增加物种多样性和稳定性, 并降低净初级生产力, 而后者的作用正相反。这与群落中全部物种的多样性变化受刈割影响较大, 而作用物种的多样性变化受资源获得性影响较大有关。上述结果表明高寒草甸生态系统地上净初级生产力主要由少数影响生产力的作用物种的多样性决定, 而稳定性则由大量共有物种的多样性所掌控。投资组合效应是物种多样性导致稳定性的机制。由于群落中不同物种的多样性效应具有分异性, 对于特定的生态系统功能而言, 物种的“功能身份”可能比物种多样性本身更重要, 不加区别地笼统定义物种多样性与生态系统功能的关系可能欠妥。  相似文献   

4.
There is increasing evidence that mixed‐species forests can provide multiple ecosystem services at a higher level than their monospecific counterparts. However, most studies concerning tree diversity and ecosystem functioning relationships use data from forest inventories (under noncontrolled conditions) or from very young plantation experiments. Here, we investigated temporal dynamics of diversity–productivity relationships and diversity–stability relationships in the oldest tropical tree diversity experiment. Sardinilla was established in Panama in 2001, with 22 plots that form a gradient in native tree species richness of one‐, two‐, three‐ and five‐species communities. Using annual data describing tree diameters and heights, we calculated basal area increment as the proxy of tree productivity. We combined tree neighbourhood‐ and community‐level analyses and tested the effects of both species diversity and structural diversity on productivity and its temporal stability. General patterns were consistent across both scales indicating that tree–tree interactions in neighbourhoods drive observed diversity effects. From 2006 to 2016, mean overyielding (higher productivity in mixtures than in monocultures) was 25%–30% in two‐ and three‐species mixtures and 50% in five‐species stands. Tree neighbourhood diversity enhanced community productivity but the effect of species diversity was stronger and increased over time, whereas the effect of structural diversity declined. Temporal stability of community productivity increased with species diversity via two principle mechanisms: asynchronous responses of species to environmental variability and overyielding. Overyielding in mixtures was highest during a strong El Niño‐related drought. Overall, positive diversity–productivity and diversity–stability relationships predominated, with the highest productivity and stability at the highest levels of diversity. These results provide new insights into mixing effects in diverse, tropical plantations and highlight the importance of analyses of temporal dynamics for our understanding of the complex relationships between diversity, productivity and stability. Under climate change, mixed‐species forests may provide both high levels and high stability of production.  相似文献   

5.
覃光莲  杜国祯 《生态学杂志》2005,24(11):1303-1307
通过对高寒草甸植物群落中采集的群落数据进行分析,探讨了物种构成的相似性、统计平均、种群变异性和净协方差等机制对形成高寒草甸植物群落中多样性与群落地上生物量变异性之间关系的影响。结果表明,地上生物量的年际变异性随着多样性的增加而减小。物种构成相似性是多样性一变异性负关系产生的原因之一,而相似性与多样性之间并无显著相关关系;统计平均效应是另一个多样性一变异性负关系的主要决定者;净协方差效应、种群变异性对多样性一变异性关系产生的影响不显著或非常有限。  相似文献   

6.
Temporal stability of pond zooplankton assemblages   总被引:1,自引:0,他引:1  
1. A large body of recent theory has recently developed focused on the relationship between the species diversity of competitor assemblages and the temporal stability of total competitor biomass. Many of these models predict that stability can increase with increasing diversity. 2. To explore natural relationships between zooplankton taxonomic diversity and temporal stability of total zooplankton biomass, 18 fishless, permanent ponds located in southern Michigan were surveyed over a 5 month period during a single growing season. 3. Results showed that temporal variability in total zooplankton biomass (measured as the coefficient of variation or CV) decreased with increasing mean zooplankton taxonomic richness. Thus, temporal stability increased with increasing taxonomic richness, consistent with theoretical predictions. 4. Decreases in the CV appeared to be because of portfolio effects (statistical averaging of species’ biomass fluctuations) rather than negative covariances among zooplankton taxa. 5. The CV of zooplankton biomass was also related to several environmental variables, suggesting that taxonomic richness may not be the only mediator of biomass stability. The CV decreased with increasing relative abundance of grazer‐resistant algae (algae >35 μm in size) and the CV increased with increasing pond productivity.  相似文献   

7.
Plant diversity and the stability of foodwebs   总被引:1,自引:0,他引:1  
Insect outbreaks in forest and agriculture monocultures led Charles Elton to propose, a half-century ago, that higher plant diversity stabilized animal foodweb dynamics in natural ecosystems. We tested this hypothesis by studying arthropod community dynamics in a long-term experimental manipulation of grassland plant species diversity. Over the course of a decade, we found that higher plant diversity increased the stability (i.e. lowered year-to-year variability) of a diverse (>700 species) arthropod community across trophic levels. As the number of plant species increased, the stability of both herbivore and predator species richness and of total herbivore abundance increased. The underlying mechanisms driving these diversity-stability relationships were plant diversity, via effects on primary productivity and plant community stability, and portfolio effects. Taken together, our results show that higher plant diversity provides more temporally consistent food and habitat resources to arthropod foodwebs. Consequently, actively managing for high plant diversity may have stronger than expected benefits for increasing animal diversity and controlling pest outbreaks.  相似文献   

8.
Recent theoretical and experimental work suggests that species diversity enhances the temporal stability of communities. However, empirical support largely comes from experimental communities. The relationship between diversity and stability in natural communities, and the ones facing environmental changes in particular, has received less attention. We created a gradient of fertility in a natural alpine meadow community to test the effects of diversity and fertilization on the temporal variability of community cover and cover of component species and to determine the importance of asynchrony, portfolio effects, cover and dominance for diversity-stability relationships. Although fertilization strongly reduced species richness, the temporal stability in community cover increased with fertilization. Most species showed a decline of temporal stability in mean population cover with fertilization, but two grass species, which dominated fertilized communities after 10 years, showed an increase of stability. Detailed analysis revealed that the increased dominance of these two highly stable grass species was associated with increased community stability at high levels of fertilization. In contrast, we found little support for other mechanisms that have been proposed to contribute to community stability, such as changes in asynchrony and portfolio effects. We conclude that the presence of highly productive species that have stabilizing properties dominate fertilized assemblages and enhance ecosystem stability.  相似文献   

9.
1. Theory predicts that the stability of a community should increase with diversity. However, despite increasing interest in the topic, most studies have focused on aggregate community properties (e.g. biomass, productivity) in small‐scale experiments, while studies using observational field data on realistic scales to examine the relationship between diversity and compositional stability are surprisingly rare. 2. We examined the diversity–stability relationship of stream invertebrate communities based on a 4‐year data set from boreal headwater streams, using among‐year similarity in community composition (Bray–Curtis coefficient) as our measure of compositional stability. We related stability to species richness and key environmental factors that may affect the diversity–stability relationship (stream size, habitat complexity, productivity and flow variability) using simple and partial regressions. 3. In simple regressions, compositional stability was positively related to species richness, stream size, productivity and habitat complexity, but only species richness and habitat complexity were significantly related to stability in partial regressions. There was, however, a strong relationship between species richness and abundance. When abundance was controlled for through re‐sampling, stability was unrelated to species richness, indicating that sampling effects were the predominant mechanism producing the positive stability–diversity relationship. By contrast, the relationship between stability and habitat complexity (macrophyte cover) became even stronger when the influence of community abundance was controlled for. Habitat complexity is thus a key factor enhancing community stability in headwater streams.  相似文献   

10.
采用样方调查和室内检测相结合法对内蒙古浑善达克沙地迎风坡、坡顶、背风坡和丘间地不同土层(0~10、10~20和20~40 cm)的土壤物理性质(包括含水量、田间持水量、容重、总孔隙度和毛管孔隙度)及草本群落的生产力(包括盖度和地上部生物量)和物种多样性(包括Margalef丰富度指数、Simpson多样性指数、Shannon-Wiener多样性指数和Pielou均匀度指数)进行比较分析;在此基础上,采用Pearson相关性分析法对不同微地形的土壤物理性质与草本群落各指标间以及草本群落生产力与物种多样性各指标间的相关性进行分析.结果表明:4种微地形的土壤物理性质总体上差异显著,但不同土层的土壤物理性质总体上无明显差异;从丘间地、背风坡、坡顶到迎风坡,土壤的含水量、田间持水量、总孔隙度和毛管孔隙度依次递减,而土壤容重则依次递增,说明迎风坡的土壤结构较差且水分散失较多,而丘间地的土壤结构和水分状况均相对较好.不同微地形间草本群落生产力和物种多样性总体上也存在明显差异,从背风坡、丘间地、坡顶到迎风坡,草本群落的生产力和物种多样性依次递减,仅Margalef丰富度指数表现为在丘间地最高、在迎风坡最低,说明迎风坡的草本群落物种多样性较低,群落稳定性差,而背风坡和丘间地的草本群落物种多样性和生产力水平均较高,群落稳定性较好.相关性分析结果表明:该区域的草本群落生产力和物种多样性与土壤容重呈负相关,与土壤的其他物理性状呈正相关,但仅部分指标间有显著或极显著相关性;草本群落生产力与物种多样性各指标间呈正相关,但多数指标间的相关性并不显著.研究结果显示:微地形能够显著影响浑善达克沙地的土壤物理性质和草本群落的分布特征,气候和人为干扰使该沙地的土壤物理性质受到严重破坏,导致草本群落生产力降低并处于不稳定状态.  相似文献   

11.
Yang H  Jiang L  Li L  Li A  Wu M  Wan S 《Ecology letters》2012,15(6):619-626
Anthropogenic perturbations may affect biodiversity and ecological stability as well as their relationships. However, diversity-stability patterns and associated mechanisms under human disturbances have rarely been explored. We conducted a 7-year field experiment examining the effects of mowing and nutrient addition on the diversity and temporal stability of herbaceous plant communities in a temperate steppe in northern China. Mowing increased population and community stability, whereas nutrient addition had the opposite effects. Stability exhibited positive relationships with species richness at population, functional group and community levels. Treatments did not alter these positive diversity-stability relationships, which were associated with the stabilising effect of species richness on component populations, species asynchrony and portfolio effects. Despite the difficulty of pinpointing causal mechanisms of diversity-stability patterns observed in nature, our results suggest that diversity may still be a useful predictor of the stability of ecosystems confronted with anthropogenic disturbances.  相似文献   

12.
Theory and empirical results suggest that high biodiversity should often cause lower temporal variability in aggregate community properties such as total community biomass. We assembled microbial communities containing 2 to 8 species of competitors in aquatic microcosms and found that the temporal change in total community biomass was positively but insignificantly associated with diversity in a constant temperature environment. There was no evidence of any trend in variable temperature environments. Three non-exclusive mechanisms might explain the lack of a net stabilising effect of species richness on temporal change. (1) A direct destabilising effect of diversity on population level variances caused some populations to vary more when embedded in more diverse communities. (2) Similar responses of the different species to environmental variability might have limited any insurance effect of increased species richness. (3) Large differences in the population level variability of different species (i.e., unevenness) could weaken the relation between species richness and community level stability. These three mechanisms may outweigh the stabilising effects of increases in total community biomass with diversity, statistical averaging, and slightly more negative covariance in more diverse communities. Our experiment and analyses advocate for further experimental investigations of diversity-variability relations.  相似文献   

13.
Recent theoretical and empirical work suggests that diversity enhances the temporal stability of a community. However, the effect of diversity on the stability of the individual populations within the community remains unclear. Some models predict a decrease of population stability with diversity, whereas others suggest that diversity has a stabilizing effect on populations. Empirical evidence for either relationship between population stability and diversity is weak. The few studies that directly assessed the stability of populations reported contradicting results. We used a six-year data-set from a plant diversity experiment to examine the relationships between diversity and temporal stability of plant biomass. Our results show that stability increased with diversity at the community-level, while the stability of populations, averaged over all species, decreased with diversity. However, when examining species separately we found positive, negative and neutral relationships between population stability and diversity. Our findings suggest that diversity may contribute to the stability of ecosystem services at the community level, but the effect of diversity on the stability of the individual populations within the community are generally negative. However, different species within the community may show strikingly different relationships between diversity and stability.  相似文献   

14.
Population stability is higher in more diverse annual plant communities   总被引:3,自引:0,他引:3  
Abstract Theoretical work suggests a paradoxical effect of diversity on the temporal stability of ecological systems: increasing diversity should result in decreased stability of populations while community stability is enhanced. While empirical work indicates that community stability tends to increase with diversity, investigations of the effect of diversity on populations have resulted in few clear patterns. Here, we examine relationships between community diversity and population stability in unmanipulated annual plant communities. We show that, counter to theory, the temporal stability of annual plant populations increases with diversity. In addition, and again counter to theoretical assumptions, mean population size tends to increase with diversity, a pattern most likely due to variation in local productivity. The fact that community diversity, population size and the temporal stability of populations covaried positively suggests that abiotic factors such as productivity may govern population stability to such an extent as to override potential effects of diversity.  相似文献   

15.
宁夏荒漠草原植物群落结构和物种多样性研究   总被引:13,自引:1,他引:12  
采用样方法对宁夏荒漠草原植物群落进行了调查,对群落结构、功能群物种组成和物种多样性以及群落生产力的关系进行探讨。结果表明,群落生产力除受物种多样性的影响外,也受物种本身特征和环境资源的影响。在荒漠草原中功能群盖度与群落初级生产力无显著的相关关系。功能群内物种多样性、物种数和个体数量上呈现一定的互为消长关系。  相似文献   

16.
While recent theoretical work has demonstrated several mechanisms whereby more diverse communities can exhibit greater temporal stability, empirical examinations have been few and the subject of much debate. We show that the temporal stability of natural summer and winter annual plant communities, at spatial scales of 0.25 m2 and 0.25 ha, tends to increase with community richness. Furthermore, more diverse communities exhibited greater stability because they contained a greater abundance of individuals (overyielding effect). Statistical averaging (the portfolio effect) and negative covariances between species (insurance and competition effects) did not enhance stability. Relationships between diversity and stability tended to be weak and were significant only at the smaller spatial scale. Because more diverse communities contained higher densities of individuals, the effect of diversity per se on stability was unclear and likely small. If overyielding is common in other ecological systems, the loss of individuals and biodiversity may often result in increased variation in ecological communities.  相似文献   

17.
Plant diversity controls arthropod biomass and temporal stability   总被引:1,自引:0,他引:1  
Understanding the linkages among species diversity, biomass production and stability underlies effective predictions for conservation, agriculture and fisheries. Although these relationships have been well studied for plants and, to a lesser extent, consumers, relationships among plant and consumer diversity, productivity, and temporal stability remain relatively unexplored. We used structural equation models to examine these relationships in a long‐term experiment manipulating plant diversity and enumerating the arthropod community response. We found remarkably similar strength and direction of interrelationships among diversity, productivity and temporal stability of consumers and plants. Further, our results suggest that the frequently observed relationships between plant and consumer diversity occur primarily via changes in plant production leading to changed consumer production rather than via plant diversity directly controlling consumer diversity. Our results demonstrate that extinction or invasion of plant species can resonate via biomass and energy flux to control diversity, production and stability of both plant and consumer communities.  相似文献   

18.
A major ecosystem effect of biodiversity is to stabilise assemblages that perform particular functions. However, diversity–stability relationships (DSRs) are analysed using a variety of different population and community properties, most of which are adopted from theory that makes several restrictive assumptions that are unlikely to be reflected in nature. Here, we construct a simple synthesis and generalisation of previous theory for the DSR. We show that community stability is a product of two quantities: the synchrony of population fluctuations, and an average species‐level population stability that is weighted by relative abundance. Weighted average population stability can be decomposed to consider effects of the mean‐variance scaling of abundance, changes in mean abundance with diversity and differences in species' mean abundance in monoculture. Our framework makes explicit how unevenness in the abundances of species in real communities influences the DSR, which occurs both through effects on community synchrony, and effects on weighted average population variability. This theory provides a more robust framework for analysing the results of empirical studies of the DSR, and facilitates the integration of findings from real and model communities.  相似文献   

19.
Richness, structure and functioning in metazoan parasite communities   总被引:4,自引:0,他引:4  
Ecosystem functioning, characterized by components such as productivity and stability, has been extensively linked with diversity in recent years, mainly in plant ecology. The aim of our study was thus to quantify general relationships between diversity, community structure and ecosystem functions in metazoan parasite communities. We used data on parasite communities from 15 species of marine fish hosts from coastal Chile. The volumetric abundance (volume of all parasite species per individual host, in mm3) was used as a surrogate for productivity. Species diversity was measured using both species richness and evenness, while community structure was estimated using the co‐occurrence indices V‐ratio, C‐score and a new C‐scores index standardized for the number of host replicates. After correcting for fish size, 47% of host species show no relationship, 13% show a hump shaped curve and 40% show positive monotonic relationships between productivity and parasite richness across all host individuals in a sample. We obtained a logarithmically decreasing relationship between evenness and productivity for all fish species, and propose a ‘dominance‐resistance’ hypothesis based on immunity to explain this pattern. The stability of the parasite community, measured as the coefficient of variation in productivity among individual hosts, was strongly and positively related to mean species richness across the 15 host species. The C‐scores index, based on the number of checkerboard units in the host‐parasite presence/absence matrix, increases linearly with mean productivity across the 15 host species, suggesting that parasite communities tend to be more structured when they are more productive. This is the likely reason why linear relationships between richness and productivity were not observed consistently in all fish species. Parasite communities provide some clear patterns for the diversity–ecosystem functioning debate in ecology, although other factors, such as the history of community assembly, may also influence these patterns.  相似文献   

20.
The relationship between biodiversity and productivity has been a hot topic in ecology. However, the relative importance of taxonomic diversity and functional characteristics (including functional dominance and functional diversity) in maintaining community productivity and the underlying mechanisms (including selection and complementarity effects) of the relationship between diversity and community productivity have been widely controversial. In this study, 194 sites were surveyed in five grassland types along a precipitation gradient in the Inner Mongolia grassland of China. The relationships between taxonomic diversity (species richness and the Shannon–Weaver index), functional dominance (the community‐weighted mean of four plant traits), functional diversity (Rao's quadratic entropy), and community aboveground biomass were analyzed. The results showed that (1) taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass all increased from low to high precipitation grassland types; (2) there were significant positive linear relationships between taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass; (3) the effect of functional characteristics on community aboveground biomass is greater than that of taxonomic diversity; and (4) community aboveground biomass depends on the community‐weighted mean plant height, which explained 57.1% of the variation in the community aboveground biomass. Our results suggested that functional dominance rather than taxonomic diversity and functional diversity mainly determines community productivity and that the selection effect plays a dominant role in maintaining the relationship between biodiversity and community productivity in the Inner Mongolia grassland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号