首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Predicting subcellular localization with AdaBoost Learner   总被引:1,自引:0,他引:1  
Protein subcellular localization, which tells where a protein resides in a cell, is an important characteristic of a protein, and relates closely to the function of proteins. The prediction of their subcellular localization plays an important role in the prediction of protein function, genome annotation and drug design. Therefore, it is an important and challenging role to predict subcellular localization using bio-informatics approach. In this paper, a robust predictor, AdaBoost Learner is introduced to predict protein subcellular localization based on its amino acid composition. Jackknife cross-validation and independent dataset test were used to demonstrate that Adaboost is a robust and efficient model in predicting protein subcellular localization. As a result, the correct prediction rates were 74.98% and 80.12% for the Jackknife test and independent dataset test respectively, which are higher than using other existing predictors. An online server for predicting subcellular localization of proteins based on AdaBoost classifier was available on http://chemdata.shu. edu.cn/sl12.  相似文献   

2.
Prediction of protein subcellular localization   总被引:6,自引:0,他引:6  
Yu CS  Chen YC  Lu CH  Hwang JK 《Proteins》2006,64(3):643-651
Because the protein's function is usually related to its subcellular localization, the ability to predict subcellular localization directly from protein sequences will be useful for inferring protein functions. Recent years have seen a surging interest in the development of novel computational tools to predict subcellular localization. At present, these approaches, based on a wide range of algorithms, have achieved varying degrees of success for specific organisms and for certain localization categories. A number of authors have noticed that sequence similarity is useful in predicting subcellular localization. For example, Nair and Rost (Protein Sci 2002;11:2836-2847) have carried out extensive analysis of the relation between sequence similarity and identity in subcellular localization, and have found a close relationship between them above a certain similarity threshold. However, many existing benchmark data sets used for the prediction accuracy assessment contain highly homologous sequences-some data sets comprising sequences up to 80-90% sequence identity. Using these benchmark test data will surely lead to overestimation of the performance of the methods considered. Here, we develop an approach based on a two-level support vector machine (SVM) system: the first level comprises a number of SVM classifiers, each based on a specific type of feature vectors derived from sequences; the second level SVM classifier functions as the jury machine to generate the probability distribution of decisions for possible localizations. We compare our approach with a global sequence alignment approach and other existing approaches for two benchmark data sets-one comprising prokaryotic sequences and the other eukaryotic sequences. Furthermore, we carried out all-against-all sequence alignment for several data sets to investigate the relationship between sequence homology and subcellular localization. Our results, which are consistent with previous studies, indicate that the homology search approach performs well down to 30% sequence identity, although its performance deteriorates considerably for sequences sharing lower sequence identity. A data set of high homology levels will undoubtedly lead to biased assessment of the performances of the predictive approaches-especially those relying on homology search or sequence annotations. Our two-level classification system based on SVM does not rely on homology search; therefore, its performance remains relatively unaffected by sequence homology. When compared with other approaches, our approach performed significantly better. Furthermore, we also develop a practical hybrid method, which combines the two-level SVM classifier and the homology search method, as a general tool for the sequence annotation of subcellular localization.  相似文献   

3.
MOTIVATION: Subcellular localization is a key functional characteristic of proteins. A fully automatic and reliable prediction system for protein subcellular localization is needed, especially for the analysis of large-scale genome sequences. RESULTS: In this paper, Support Vector Machine has been introduced to predict the subcellular localization of proteins from their amino acid compositions. The total prediction accuracies reach 91.4% for three subcellular locations in prokaryotic organisms and 79.4% for four locations in eukaryotic organisms. Predictions by our approach are robust to errors in the protein N-terminal sequences. This new approach provides superior prediction performance compared with existing algorithms based on amino acid composition and can be a complementary method to other existing methods based on sorting signals. AVAILABILITY: A web server implementing the prediction method is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/. SUPPLEMENTARY INFORMATION: Supplementary material is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/.  相似文献   

4.
Subcellular localization is one of the key properties in functional annotation of proteins. Support vector machines (SVMs) have been widely used for automated prediction of subcellular localizations. Existing methods differ in the protein encoding schemes used. In this study, we present two methods for protein encoding to be used for SVM-based subcellular localization prediction: n-peptide compositions with reduced amino acid alphabets for larger values of n and pairwise sequence similarity scores based on whole sequence and N-terminal sequence. We tested the methods on a common benchmarking data set that consists of 2,427 eukaryotic proteins with four localization sites. As a result of 5-fold cross-validation tests, the encoding with n-peptide compositions provided the accuracies of 84.5, 88.9, 66.3, and 94.3 percent for cytoplasmic, extracellular, mitochondrial, and nuclear proteins, where the overall accuracy was 87.1 percent. The second method provided 83.6, 87.7, 87.9, and 90.5 percent accuracies for individual locations and 87.8 percent overall accuracy. A hybrid system, which we called PredLOC, makes a final decision based on the results of the two presented methods which achieved an overall accuracy of 91.3 percent, which is better than the achievements of many of the existing methods. The new system also outperformed the recent methods in the experiments conducted on a new-unique SWISSPROT test set  相似文献   

5.

Background

Subcellular localization of a new protein sequence is very important and fruitful for understanding its function. As the number of new genomes has dramatically increased over recent years, a reliable and efficient system to predict protein subcellular location is urgently needed.

Results

Esub8 was developed to predict protein subcellular localizations for eukaryotic proteins based on amino acid composition. In this research, the proteins are classified into the following eight groups: chloroplast, cytoplasm, extracellular, Golgi apparatus, lysosome, mitochondria, nucleus and peroxisome. We know subcellular localization is a typical classification problem; consequently, a one-against-one (1-v-1) multi-class support vector machine was introduced to construct the classifier. Unlike previous methods, ours considers the order information of protein sequences by a different method. Our method is tested in three subcellular localization predictions for prokaryotic proteins and four subcellular localization predictions for eukaryotic proteins on Reinhardt's dataset. The results are then compared to several other methods. The total prediction accuracies of two tests are both 100% by a self-consistency test, and are 92.9% and 84.14% by the jackknife test, respectively. Esub8 also provides excellent results: the total prediction accuracies are 100% by a self-consistency test and 87% by the jackknife test.

Conclusions

Our method represents a different approach for predicting protein subcellular localization and achieved a satisfactory result; furthermore, we believe Esub8 will be a useful tool for predicting protein subcellular localizations in eukaryotic organisms.
  相似文献   

6.
We develop a new weighting approach of gene ontology (GO) terms for predicting protein subcellular localization. The weights of individual GO terms, corresponding to their contribution to the prediction algorithm, are determined by the term-weighting methods used in text categorization. We evaluate several term-weighting methods, which are based on inverse document frequency, information gain, gain ratio, odds ratio, and chi-square and its variants. Additionally, we propose a new term-weighting method based on the logarithmic transformation of chi-square. The proposed term-weighting method performs better than other term-weighting methods, and also outperforms state-of-the-art subcellular prediction methods. Our proposed method achieves 98.1%, 99.3%, 98.1%, 98.1%, and 95.9% overall accuracies for the animal BaCelLo independent dataset (IDS), fungal BaCelLo IDS, animal Höglund IDS, fungal Höglund IDS, and PLOC dataset, respectively. Furthermore, the close correlation between high-weighted GO terms and subcellular localizations suggests that our proposed method appropriately weights GO terms according to their relevance to the localizations.  相似文献   

7.
研究真核蛋白质的亚细胞位点是了解真核蛋白质功能,深入研究蛋白质相关信号通路内在机制的基础。同时,可以为了解 疾病发病机制及为新药研发提供帮助。因此,研究真核蛋白质的亚细胞位点意义十分重大。随着基因组测序的完成,真核蛋白质 序列信息增长迅速,为真核蛋白质亚细胞位点的研究提出了更多的挑战。传统的实验法难以满足蛋白质信息量迅速增长的需求。 而采用生物信息学手段处理大规模数据的计算预测方法,可在较短时间内获得大量真核蛋白质亚细胞位点信息,弥补了实验法 的不足。因此,运用计算预测法预测真核蛋白质的亚细胞位点成为生物信息学领域的研究热点之一。本文主要从提取真核蛋白质 的特征信息、计算预测方法及预测效果的评价三个方面,介绍近年来真核蛋白质亚细胞位点预测的研究进展。  相似文献   

8.
Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectively used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.  相似文献   

9.
Subcellular localization is a key functional characteristic of proteins. It is determined by signals encoded in the protein sequence. The experimental determination of subcellular localization is laborious. Thus, a number of computational methods have been developed to predict the protein location from sequence. However predictions made by different methods often disagree with each other and it is not always clear which algorithm performs best for the given cellular compartment. We benchmarked primary subcellular localization predictors for proteins from Gram-negative bacteria, PSORTb3, PSLpred, CELLO, and SOSUI-GramN, on a common dataset that included 1056 proteins. We found that PSORTb3 performs best on the average, but is outperformed by other methods in predictions of extracellular proteins. This motivated us to develop a meta-predictor, which combines the primary methods by using the logistic regression models, to take advantage of their combined strengths, and to eliminate their individual weaknesses. MetaLocGramN runs the primary methods, and based on their output classifies protein sequences into one of five major localizations of the Gram-negative bacterial cell: cytoplasm, plasma membrane, periplasm, outer membrane, and extracellular space. MetaLocGramN achieves the average Matthews correlation coefficient of 0.806, i.e. 12% better than the best individual primary method. MetaLocGramN is a meta-predictor specialized in predicting subcellular localization for proteins from Gram-negative bacteria. According to our benchmark, it performs better than all other tools run independently. MetaLocGramN is a web and SOAP server available for free use by all academic users at the URL http://iimcb.genesilico.pl/MetaLocGramN. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction.  相似文献   

10.
The ability to predict the subcellular localization of a protein from its sequence is of great importance, as it provides information about the protein's function. We present a computational tool, PredSL, which utilizes neural networks, Markov chains, profile hidden Markov models, and scoring matrices for the prediction of the subcellular localization of proteins in eukaryotic cells from the N-terminal amino acid sequence. It aims to classify proteins into five groups: chloroplast, thylakoid, mitochondrion, secretory pathway, and "other". When tested in a fivefold cross-validation procedure, PredSL demonstrates 86.7% and 87.1% overall accuracy for the plant and non-plant datasets, respectively. Compared with TargetP, which is the most widely used method to date, and LumenP, the results of PredSL are comparable in most cases. When tested on the experimentally verified proteins of the Saccharomyces cerevisiae genome, PredSL performs comparably if not better than any available algorithm for the same task. Furthermore, PredSL is the only method capable for the prediction of these subcellular localizations that is available as a stand-alone application through the URL: http://bioinformatics.biol.uoa.gr/PredSL/.  相似文献   

11.
Subcellular localization of messenger RNAs (mRNAs), as a prevalent mechanism, gives precise and efficient control for the translation process. There is mounting evidence for the important roles of this process in a variety of cellular events. Computational methods for mRNA subcellular localization prediction provide a useful approach for studying mRNA functions. However, few computational methods were designed for mRNA subcellular localization prediction and their performance have room for improvement. Especially, there is still no available tool to predict for mRNAs that have multiple localization annotations. In this paper, we propose a multi-head self-attention method, DM3Loc, for multi-label mRNA subcellular localization prediction. Evaluation results show that DM3Loc outperforms existing methods and tools in general. Furthermore, DM3Loc has the interpretation ability to analyze RNA-binding protein motifs and key signals on mRNAs for subcellular localization. Our analyses found hundreds of instances of mRNA isoform-specific subcellular localizations and many significantly enriched gene functions for mRNAs in different subcellular localizations.  相似文献   

12.
Many methods have been described to predict the subcellular location of proteins from sequence information. However, most of these methods either rely on global sequence properties or use a set of known protein targeting motifs to predict protein localization. Here, we develop and test a novel method that identifies potential targeting motifs using a discriminative approach based on hidden Markov models (discriminative HMMs). These models search for motifs that are present in a compartment but absent in other, nearby, compartments by utilizing an hierarchical structure that mimics the protein sorting mechanism. We show that both discriminative motif finding and the hierarchical structure improve localization prediction on a benchmark data set of yeast proteins. The motifs identified can be mapped to known targeting motifs and they are more conserved than the average protein sequence. Using our motif-based predictions, we can identify potential annotation errors in public databases for the location of some of the proteins. A software implementation and the data set described in this paper are available from http://murphylab.web.cmu.edu/software/2009_TCBB_motif/.  相似文献   

13.
用离散增量结合支持向量机方法预测蛋白质亚细胞定位   总被引:3,自引:0,他引:3  
赵禹  赵巨东  姚龙 《生物信息学》2010,8(3):237-239,244
对未知蛋白的功能注释是蛋白质组学的主要目标。一个关键的注释是蛋白质亚细胞定位的预测。本文应用离散增量结合支持向量机(ID_SVM)的方法,对阳性革兰氏细菌蛋白的5类亚细胞定位点进行预测。在独立检验下,其总体预测成功率为89.66%。结果发现ID_SVM算法对预测的成功率有很大改进。  相似文献   

14.
We develop a probabilistic system for predicting the subcellular localization of proteins and estimating the relative population of the various compartments in yeast. Our system employs a Bayesian approach, updating a protein's probability of being in a compartment, based on a diverse range of 30 features. These range from specific motifs (e.g. signal sequences or the HDEL motif) to overall properties of a sequence (e.g. surface composition or isoelectric point) to whole-genome data (e.g. absolute mRNA expression levels or their fluctuations). The strength of our approach is the easy integration of many features, particularly the whole-genome expression data. We construct a training and testing set of approximately 1300 yeast proteins with an experimentally known localization from merging, filtering, and standardizing the annotation in the MIPS, Swiss-Prot and YPD databases, and we achieve 75 % accuracy on individual protein predictions using this dataset. Moreover, we are able to estimate the relative protein population of the various compartments without requiring a definite localization for every protein. This approach, which is based on an analogy to formalism in quantum mechanics, gives better accuracy in determining relative compartment populations than that obtained by simply tallying the localization predictions for individual proteins (on the yeast proteins with known localization, 92% versus 74%). Our training and testing also highlights which of the 30 features are informative and which are redundant (19 being particularly useful). After developing our system, we apply it to the 4700 yeast proteins with currently unknown localization and estimate the relative population of the various compartments in the entire yeast genome. An unbiased prior is essential to this extrapolated estimate; for this, we use the MIPS localization catalogue, and adapt recent results on the localization of yeast proteins obtained by Snyder and colleagues using a minitransposon system. Our final localizations for all approximately 6000 proteins in the yeast genome are available over the web at: http://bioinfo.mbb.yale. edu/genome/localize.  相似文献   

15.

Background  

Gene Ontology (GO) annotation, which describes the function of genes and gene products across species, has recently been used to predict protein subcellular and subnuclear localization. Existing GO-based prediction methods for protein subcellular localization use the known accession numbers of query proteins to obtain their annotated GO terms. An accurate prediction method for predicting subcellular localization of novel proteins without known accession numbers, using only the input sequence, is worth developing.  相似文献   

16.
Li L  Zhang Y  Zou L  Li C  Yu B  Zheng X  Zhou Y 《PloS one》2012,7(1):e31057
With the rapid increase of protein sequences in the post-genomic age, it is challenging to develop accurate and automated methods for reliably and quickly predicting their subcellular localizations. Till now, many efforts have been tried, but most of which used only a single algorithm. In this paper, we proposed an ensemble classifier of KNN (k-nearest neighbor) and SVM (support vector machine) algorithms to predict the subcellular localization of eukaryotic proteins based on a voting system. The overall prediction accuracies by the one-versus-one strategy are 78.17%, 89.94% and 75.55% for three benchmark datasets of eukaryotic proteins. The improved prediction accuracies reveal that GO annotations and hydrophobicity of amino acids help to predict subcellular locations of eukaryotic proteins.  相似文献   

17.
MOTIVATION: There is a scarcity of efficient computational methods for predicting protein subcellular localization in eukaryotes. Currently available methods are inadequate for genome-scale predictions with several limitations. Here, we present a new prediction method, pTARGET that can predict proteins targeted to nine different subcellular locations in the eukaryotic animal species. RESULTS: The nine subcellular locations predicted by pTARGET include cytoplasm, endoplasmic reticulum, extracellular/secretory, golgi, lysosomes, mitochondria, nucleus, plasma membrane and peroxisomes. Predictions are based on the location-specific protein functional domains and the amino acid compositional differences across different subcellular locations. Overall, this method can predict 68-87% of the true positives at accuracy rates of 96-99%. Comparison of the prediction performance against PSORT showed that pTARGET prediction rates are higher by 11-60% in 6 of the 8 locations tested. Besides, the pTARGET method is robust enough for genome-scale prediction of protein subcellular localizations since, it does not rely on the presence of signal or target peptides. AVAILABILITY: A public web server based on the pTARGET method is accessible at the URL http://bioinformatics.albany.edu/~ptarget. Datasets used for developing pTARGET can be downloaded from this web server. Source code will be available on request from the corresponding author.  相似文献   

18.
The function of a protein is intimately tied to its subcellular localization. Although localizations have been measured for many yeast proteins through systematic GFP fusions, similar studies in other branches of life are still forthcoming. In the interim, various machine-learning methods have been proposed to predict localization using physical characteristics of a protein, such as amino acid content, hydrophobicity, side-chain mass and domain composition. However, there has been comparatively little work on predicting localization using protein networks. Here, we predict protein localizations by integrating an extensive set of protein physical characteristics over a protein's extended protein-protein interaction neighborhood, using a classification framework called 'Divide and Conquer k-Nearest Neighbors' (DC-kNN). These predictions achieve significantly higher accuracy than two well-known methods for predicting protein localization in yeast. Using new GFP imaging experiments, we show that the network-based approach can extend and revise previous annotations made from high-throughput studies. Finally, we show that our approach remains highly predictive in higher eukaryotes such as fly and human, in which most localizations are unknown and the protein network coverage is less substantial.  相似文献   

19.
Subcellular location is an important functional annotation of proteins. An automatic, reliable and efficient prediction system for protein subcellular localization is necessary for large-scale genome analysis. This paper describes a protein subcellular localization method which extracts features from protein profiles rather than from amino acid sequences. The protein profile represents a protein family, discards part of the sequence information that is not conserved throughout the family and therefore is more sensitive than the amino acid sequence. The amino acid compositions of whole profile and the N-terminus of the profile are extracted, respectively, to train and test the probabilistic neural network classifiers. On two benchmark datasets, the overall accuracies of the proposed method reach 89.1% and 68.9%, respectively. The prediction results show that the proposed method perform better than those methods based on amino acid sequences. The prediction results of the proposed method are also compared with Subloc on two redundance-reduced datasets.  相似文献   

20.
Proteins targeting the same subcellular localization tend to participate in mutual protein–protein interactions (PPIs) and are often functionally associated. Here, we investigated the relationship between disease‐associated proteins and their subcellular localizations, based on the assumption that protein pairs associated with phenotypically similar diseases are more likely to be connected via subcellular localization. The spatial constraints from subcellular localization significantly strengthened the disease associations of the proteins connected by subcellular localizations. In particular, certain disease types were more prevalent in specific subcellular localizations. We analyzed the enrichment of disease phenotypes within subcellular localizations, and found that there exists a significant correlation between disease classes and subcellular localizations. Furthermore, we found that two diseases displayed high comorbidity when disease‐associated proteins were connected via subcellular localization. We newly explained 7584 disease pairs by using the context of protein subcellular localization, which had not been identified using shared genes or PPIs only. Our result establishes a direct correlation between protein subcellular localization and disease association, and helps to understand the mechanism of human disease progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号