首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
In vertebrates, the formation of raft lipid microdomains plays an important part in both polarized protein sorting and signal transduction. To establish a system in which raft-dependent processes could be studied genetically, we have analyzed the protein and lipid composition of these microdomains in Drosophila melanogaster. Using mass spectrometry, we identified the phospholipids, sphingolipids, and sterols present in Drosophila membranes. Despite chemical differences between Drosophila and mammalian lipids, their structure suggests that the biophysical properties that allow raft formation have been preserved. Consistent with this, we have identified a detergent-insoluble fraction of Drosophila membranes that, like mammalian rafts, is rich in sterol, sphingolipids, and glycosylphosphatidylinositol-linked proteins. We show that the sterol-linked Hedgehog N-terminal fragment associates specifically with this detergent-insoluble membrane fraction. Our findings demonstrate that raft formation is preserved across widely separated phyla in organisms with different lipid structures. They further suggest sterol modification as a novel mechanism for targeting proteins to raft membranes and raise the possibility that signaling and polarized intracellular transport of Hedgehog are based on raft association.  相似文献   

3.
4.
The tumor suppressor gene patched (ptc) encodes an approximately 140 kDa polytopic transmembrane protein [1-3] [corrected] that binds members of the Hedgehog (Hh) family of signaling proteins [4-6] [corrected] and regulates the activity of Smoothened (Smo), a G protein-coupled receptor-like protein essential for Hh signal transduction [7-9] [corrected]. Ptc contains a sterol-sensing domain (SSD) [10, 11] [corrected], a motif found in proteins implicated in the intracellular trafficking of cholesterol [12] [corrected], and/or other cargoes [13-15] [corrected]. Cholesterol plays a critical role in Hedgehog (Hh) signaling by facilitating the regulated secretion and sequestration of the Hh protein [16] [corrected], to which it is covalently coupled. In addition, cholesterol synthesis inhibitors block the ability of cells to respond to Hh [18, 19] [corrected], and this finding points to an additional requirement for the lipid in regulating downstream components of the Hh signaling pathway. Although the SSD of Ptc has been linked to both the sequestration of, and the cellular response to Hh [16, 20, 21] [corrected], definitive evidence for its function has so far been lacking. Here we describe the identification and characterization of two missense mutations in the SSD of Drosophila Ptc; strikingly, while both mutations abolish Smo repression, neither affects the ability of Ptc to interact with Hh. We speculate that Ptc may control Smo activity by regulating an intracellular trafficking process dependent upon the integrity of the SSD.  相似文献   

5.
Reverse cholesterol transport (RCT) has been characterized as a crucial step for antiatherosclerosis, which is initiated by ATP-binding cassette A1 (ABCA1) to mediate the efflux of cellular phospholipids and cholesterol to lipid-free apolipoprotein A-I (apoA-I). However, the mechanisms underlying apoA-I/ABCA1 interaction to lead to the lipidation of apoA-I are poorly understood. There are several models proposed for the interaction of apoA-I with ABCA1 as well as the lipidation of apoA-I mediated by ABCA1. ApoA-I increases the levels of ABCA1 protein markedly. In turn, ABCA1 can stabilize apoA-I. The interaction of apoA-I with ABCA1 could activate signaling molecules that modulate posttranslational ABCA1 activity or lipid transport activity. The key signaling molecules in these processes include protein kinase A (PKA), protein kinase C (PKC), Janus kinase 2 (JAK2), Rho GTPases and Ca2+, and many factors also could influence the interaction of apoA-I with ABCA1. This review will summarize these mechanisms for the apoA-I interaction with ABCA1 as well as the signal transduction pathways involved in these processes.  相似文献   

6.
Lipid rafts are plasma membrane microdomains that are highly enriched with cholesterol and sphingolipids and in which various receptors and other proteins involved in signal transduction reside. In the present work, we analyzed the effect of cholesterol biosynthesis inhibition on lipid raft/caveolae composition and functionality and assessed whether sterol precursors of cholesterol could substitute for cholesterol in lipid rafts/caveolae. 3T3-L1 preadipocytes were treated with distal inhibitors of cholesterol biosynthesis or vehicle (control) and then membrane rafts were isolated by sucrose density gradient centrifugation. Inhibition of cholesterol biosynthesis with either SKF 104976, AY 9944, 5,22-cholestadien-3β-ol or triparanol, which inhibit different enzymes on the pathway, led to a marked reduction in cholesterol content and accumulation of different sterol intermediates in both lipid rafts and non-raft domains. These changes in sterol composition were accompanied by disruption of lipid rafts, with redistribution of caveolin-1 and Fyn, impairment of insulin-Akt signaling and the inhibition of insulin-stimulated glucose transport. Cholesterol repletion abrogated the effects of cholesterol biosynthesis inhibitors, reflecting they were specific. Our results show that cholesterol is required for functional raft-dependent insulin signaling.  相似文献   

7.
Heparan sulphate proteoglycans (HSPG's) are cell surface proteins to which long, unbranched chains of modified sugars called heparan sulphate glycosaminoglycans have been covalently attached. Cell culture studies have demonstrated that HSPG's are required for optimal signal transduction by many secreted cell signaling molecules. Now, genetic studies in both Drosophila and vertebrates have illustrated that HSPG's play important roles in signal transduction in vivo and have also begun to reveal new roles for HSPG's in signaling events. In particular, HSPG's have been shown to be important in ligand sequestration of wingless, for the transport of the Hedgehog ligand, and for modulation of the Dpp morphogenetic gradient.  相似文献   

8.
Lipid rafts and caveolae play a pivotal role in organization of signaling by TLR4 and several other immune receptors. Beyond the simple cataloguing of signaling events compartmentalized by these membrane microdomains, recent studies have revealed the surprisingly central importance of dynamic remodeling of membrane lipid domains to immune signaling. Simple interventions upon membrane lipid, such as changes in cholesterol loading or crosslinking of raft lipids, are sufficient to induce micrometer-scale reordering of membranes and their protein cargo with consequent signal transduction. In this review, using TLR signaling in the macrophage as a central focus, we discuss emerging evidence that environmental and genetic perturbations of membrane lipid regulate protein signaling, illustrate how homeostatic flow of cholesterol and other lipids through rafts regulates the innate immune response, and highlight recent attempts to harness these insights toward therapeutic development.  相似文献   

9.
10.
The Epstein-Barr virus (EBV) is an important human pathogen that is associated with multiple cancers. The major oncoprotein of the virus, latent membrane protein 1 (LMP1), is essential for EBV B-cell immortalization and is sufficient to transform rodent fibroblasts. This viral transmembrane protein activates multiple cellular signaling pathways by engaging critical effector molecules and thus acts as a ligand-independent growth factor receptor. LMP1 is thought to signal from internal lipid raft containing membranes; however, the mechanisms through which these events occur remain largely unknown. Lipid rafts are microdomains within membranes that are rich in cholesterol and sphingolipids. Lipid rafts act as organization centers for biological processes, including signal transduction, protein trafficking, and pathogen entry and egress. In this study, the recruitment of key signaling components to lipid raft microdomains by LMP1 was analyzed. LMP1 increased the localization of phosphatidylinositol 3-kinase (PI3K) and its activated downstream target, Akt, to lipid rafts. In addition, mass spectrometry analyses identified elevated vimentin in rafts isolated from LMP1 expressing NPC cells. Disruption of lipid rafts through cholesterol depletion inhibited PI3K localization to membranes and decreased both Akt and ERK activation. Reduction of vimentin levels or disruption of its organization also decreased LMP1-mediated Akt and ERK activation and inhibited transformation of rodent fibroblasts. These findings indicate that LMP1 reorganizes membrane and cytoskeleton microdomains to modulate signal transduction.  相似文献   

11.
Hedgehog signaling plays conserved roles in controlling embryonic development; its dysregulation has been implicated in many human diseases including cancers. Hedgehog signaling has an unusual reception system consisting of two transmembrane proteins, Patched receptor and Smoothened signal transducer. Although activation of Smoothened and its downstream signal transduction have been intensively studied, less is known about how Patched receptor is regulated, and particularly how this regulation contributes to appropriate Hedgehog signal transduction. Here we identified a novel role of Smurf E3 ligase in regulating Hedgehog signaling by controlling Patched ubiquitination and turnover. Moreover, we showed that Smurf-mediated Patched ubiquitination depends on Smo activity in wing discs. Mechanistically, we found that Smo interacts with Smurf and promotes it to mediate Patched ubiquitination by targeting the K1261 site in Ptc. The further mathematic modeling analysis reveals that a bidirectional control of activation of Smo involving Smurf and Patched is important for signal-receiving cells to precisely interpret external signals, thereby maintaining Hedgehog signaling reliability. Finally, our data revealed an evolutionarily conserved role of Smurf proteins in controlling Hh signaling by targeting Ptc during development.  相似文献   

12.
13.
小窝(caveolae)是一类特殊的膜脂筏,富含鞘磷脂和胆固醇。小窝蛋白-1(caveolin-1)是小窝的标志蛋白质,分子量约22 kD。后者不但直接参与小窝结构的形成、膜泡运输、胆固醇稳态维持,还通过其脚手架结构域(caveolin scaffolding domain,CSD)与众多信号分子相互作用调控细胞的生长、发育和分化,最终影响机体的生理和病理过程。近年发现,小窝蛋白-1和胞膜窖不但存在于内皮细胞、脂肪细胞、血管平滑肌细胞和纤维细胞中,还广泛表达于免疫细胞中,参与调节免疫细胞活化引起的炎症应答反应。本文结合最新的研究进展和前期结果,简要综述小窝蛋白-1在巨噬细胞、T细胞、B细胞以及中性粒细胞等免疫细胞内的调节作用,以及在细菌感染如绿脓杆菌、沙门氏菌和克雷伯杆菌的炎症中的信号转导研究进展。  相似文献   

14.
The fused gene encodes a serine/threonine kinase involved in Hedgehog signal transduction during Drosophila embryo and larval imaginal disc development. Additionally, fused mutant females exhibit reduced fecundity that we report here to be associated with defects in three aspects of egg chamber formation: encapsulation of germline cysts by prefollicular cells in the germarium, interfollicular stalk morphogenesis and oocyte posterior positioning. Using clonal analysis we show that fused is required cell autonomously in prefollicular and pre-stalk cells to control their participation in these aspects of egg chamber formation. In contrast to what has been found for Hedgehog and other known components of Hedgehog signal transduction, we show that fused does not play a role in the regulation of somatic stem cell proliferation. However, genetic interaction studies, as well as the analysis of the effects of a partial reduction in Hedgehog signaling in the ovary, indicate that fused acts in the classical genetic pathway for Hedgehog signal transduction which is necessary for somatic cell differentiation during egg chamber formation. Therefore, we propose a model in which Hedgehog signals at least twice in germarial somatic cells: first, through a fused-independent pathway to control somatic stem cell proliferation; and second, through a classical fused-dependent pathway to regulate prefollicular cell differentiation.  相似文献   

15.
16.
Reviews of signal transduction have often focused on the cascades of protein kinases and protein phosphatases and their cytoplasmic substrates that become activated in response to extracellular signals. Lipids, lipid kinases, and lipid phosphatases have not received the same amount of attention as proteins in studies of signal transduction. However, lipids serve a variety of roles in signal transduction. They act as ligands that activate signal transduction pathways as well as mediators of signaling pathways, and lipids are the substrates of lipid kinases and lipid phosphatases. Cell membranes are the source of the lipids involved in signal transduction, but membranes also constitute lipid barriers that must be traversed by signal transduction pathways. The purpose of this review is to explore the magnitude and diversity of the roles of the cell membrane and lipids in signal transduction and to highlight the interrelatedness of families of lipid mediators in signal transduction.  相似文献   

17.
The intraflagellar transport (IFT) system is required for building primary cilia, sensory organelles that cells use to respond to their environment. IFT particles are composed of about 20 proteins, and these proteins are highly conserved across ciliated species. IFT25, however, is absent from some ciliated organisms, suggesting that it may have a unique role distinct from ciliogenesis. Here, we generate an Ift25 null mouse and show that IFT25 is not required for ciliary assembly but is required for proper Hedgehog signaling, which in mammals occurs within cilia. Mutant mice die at birth with multiple phenotypes, indicative of Hedgehog signaling dysfunction. Cilia lacking IFT25 have defects in the signal-dependent transport of multiple Hedgehog components including Patched-1, Smoothened, and Gli2, and fail to activate the pathway upon stimulation. Thus, IFT function is not restricted to building cilia where signaling occurs, but also plays a separable role in signal transduction events.  相似文献   

18.
Marcus Michel 《Fly》2016,10(4):204-209
During animal development, cells with similar function and fate often stay together and sort out from cells with different fates. In Drosophila wing imaginal discs, cells of anterior and posterior fates are separated by a straight compartment boundary. Separation of anterior and posterior cells requires the homeodomain-containing protein Engrailed, which is expressed in posterior cells. Engrailed induces the expression of the short-range signaling molecule Hedgehog in posterior cells and confines Hedgehog signal transduction to anterior cells. Transduction of the Hedgehog signal in anterior cells is required for the separation of anterior and posterior cells. Previous work showed that this separation of cells involves a local increase in mechanical tension at cell junctions along the compartment boundary. However, how mechanical tension was locally increased along the compartment boundary remained unknown. A recent paper now shows that the difference in Hedgehog signal transduction between anterior and posterior cells is necessary and sufficient to increase mechanical tension. The local increase in mechanical tension biases junctional rearrangements during cell intercalations to maintain the straight shape of the compartment boundary. These data highlight how developmental signals can generate patterns of mechanical tension important for tissue organization.  相似文献   

19.
Cyclopamine is a teratogenic steroidal alkaloid that causes cyclopia by blocking Sonic hedgehog (Shh) signal transduction. We have tested whether this activity of cyclopamine is related to disruption of cellular cholesterol transport and putative secondary effects on the Shh receptor, Patched (Ptc). First, we report that the potent antagonism of Shh signaling by cyclopamine is not a general property of steroidal alkaloids with similar structure. The structural features of steroidal alkaloids previously associated with the induction of holoprosencephaly in whole animals are also associated with inhibition of Shh signaling in vitro. Second, by comparing the effects of cyclopamine on Shh signaling with those of compounds known to block cholesterol transport, we show that the action of cyclopamine cannot be explained by inhibition of intracellular cholesterol transport. However, compounds that block cholesterol transport by affecting the vesicular trafficking of the Niemann-Pick C1 protein (NPC1), which is structurally similar to Ptc, are weak Shh antagonists. Rather than supporting a direct link between cholesterol homeostasis and Shh signaling, our findings suggest that the functions of both NPC1 and Ptc involve a common vesicular transport pathway. Consistent with this model, we find that Ptc and NPC1 colocalize extensively in a vesicular compartment in cotransfected cells.  相似文献   

20.
Lipid rafts are highly enriched in cholesterol and sphingolipids. In contrast to many reports that verify the importance of cholesterol among raft lipid components, studies that address the role of sphingolipids in raft organization and function are scarce. Here, we investigate the role of glycosphingolipids (GSLs) in raft structure and raft-mediated signal transduction in T lymphocytes by the usage of a specific GSL synthesis inhibitor, d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP). Surface GM1 expression and the expression of GSLs in rafts were profoundly reduced by D-PDMP treatment, whereas the expression of other lipid and protein constituents, such as cholesterol, sphingomyelin, Lck, and linker for activation of T cells, was not affected. T cell receptor-mediated signal transduction induced by antigen stimulation or by antibody cross-linking was normal in D-PDMP-treated T cells. In contrast, the signal through glycosylphosphatidylinositol (GPI)-anchored proteins was clearly augmented by D-PDMP treatment. Moreover, GPI-anchored proteins became more susceptible to phosphatidylinositol-specific phospholipase C cleavage in D-PDMP-treated cells, demonstrating that GSL depletion from rafts primarily influences the expression state and function of GPI-anchored proteins. Finally, by comparing the effect of D-PDMP with that of methyl-beta-cyclodextrin, we identified that compared with cholesterol depletion, GSL depletion has the opposite effect on the phosphatidylinositol-specific phospholipase C sensitivity and signaling ability of GPI-anchored proteins. These results indicate a specific role of GSLs in T cell membrane rafts that is dispensable for T cell receptor signaling but is important for the signal via GPI-anchored proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号