首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We studied an alteration of calcineurin expression in the heart and its modification by cyclosporin A and an ACE inhibitor, temocapril, using Dahl salt-sensitive (DS) rats with hypertensive left ventricular hypertrophy (LVH) and congestive heart failure (CHF). Calcineurin protein expression in the LV myocardium was increased in the LVH stage, but then decreased during CHF transition. Chronic cyclosporin A treatment (10 mg/kg/day), which inhibits calcineurin activity, could not block the increases of LV weight and dimensions and did not improve the LV systolic function during the CHF transition. In contrast, chronic temocapril treatment (20 mg/kg/day) restored the downregulation of calcineurin expression, but progression of the hypertrophic process was inhibited. Therefore, cardiac calcineurin is increased in the hypertensive LVH and may be involved in the development of the adaptive hypertrophic process. However, calcineurin expression is downregulated during CHF transition and may no longer play a major role in the pathogenesis of myocardial hypertrophy in the failing hearts.  相似文献   

3.
4.
5.
The human/animal heart, comprised of cells called “myocytes” is an incredible organ that to remain beating must be fueled constantly via the hydrolysis of adenosine tri-phosphate (ATP). Deriving most of its ATP from mitochondrial oxidative phosphorylation (ox phos), and a smaller amount from “glycolysis”, i.e., glucose conversion to pyruvate or lactate, the heart helps in the delivery of oxygen (via hemoglobin) to every organ/tissue in our body. Then, the empty (deoxy) hemoglobin returns to load more oxygen and the journey to tissues is repeated 24 h a day, year after year, until “death do us part”. To support this essential “pumping” process the heart must work constantly, i.e., 70–80 years (life expectancy in the U.S.). This is a remarkable feat when compared with one of our most costly people-made technologies, i.e., automobiles (cars). In the past century, it was rare to see the family car survive more than 10–15 years unless it had been subjected to motor replacement surgery. Most were laid to rest at a much earlier age. Now, in this new millennium should a brilliant car manufacturer succeed in constructing a car engine as efficient as the human heart, each family member requiring a car would need only one per life time. With this in mind, one of the major future “matters of the heart” is to keep it pumping, not only for the current 70–80 year life span but much longer. To do this depends on, among other matters, the two processes noted above, i.e., oxidative phosphorylation and glycolysis. The former is strictly a mitochondrial process that works only in the presence of oxygen whereas glycolysis, dependent on mitochondrial bound hexokinase 2 (MB-HK-2), works either in the presence or absence of oxygen. In addition, the MB-HK 2 is anti-apoptotic and helps with other factors to retard cell death. Current estimates reveal that the human heart of an individual living 70–80 years will have undergone 2.5–3.0 billion beats, a feat that is energetically feasible only due to the heart cells’ (cardiomyocytes) large population of mitochondria with bound HK-2.  相似文献   

6.
BACKGROUND: Transgenic (tg) mice with chronic overexpression of the human erythropoietin gene are characterized by an increased hematocrit of about 0.80 in adulthood. This is accompanied by cardiac dysfunction and premature death. The aim of this study was to examine whether this cardiac dysfunction was accompanied by hypertrophy of the heart with remodeling of the extracellular matrix (ECM). METHODS: 3-months-old wild type (wt) and tg mice without cardiac hypertrophy were compared with the respective 7-months-old mice. The mRNA of brain natriuretic peptide (BNP), of the matrix metalloproteinases (MMP)-2, -8, -9, -13, of the tissue inhibitor of metalloproteinase (TIMP)-1, -2, -3, -4 and of collagen I and III was detected by ribonuclease protection assay. The activity of MMPs was measured by zymography. RESULTS: There was hypertrophy of both ventricles in 7-months-old tg mice, which was accompanied by elevated mRNA expression of BNP. MMP-2 activity was increased and MMP-9 activity was decreased in the left ventricle (LV) of 3-months-old tg mice. This was accompanied by elevated TIMP-4 expression, followed by a shift of collagen mRNA expression from type III to type I in this ventricle. CONCLUSION: The shift to collagen I in the heart of tg mice might be associated with a stiffer ventricle resulting in diastolic dysfunction. This may be responsible for a relative and intermittent LV- and right ventricle (RV)-insufficiency which was likely to have occurred as evidenced by the elevation of lung and liver weight with hemorrhage and interstitial fibrosis after 7 months.  相似文献   

7.
Changes in muscle fiber orientation across the wall of the left ventricle (LV) cause the apex of the heart to turn 10-15 deg in opposition to its base during systole and are believed to increase stroke volume and lower wall stress in healthy hearts. Studies show that cardiac torsion is sensitive to various disease states, which suggests that it may be an important aspect of cardiac function. Modern imaging techniques have sparked renewed interest in cardiac torsion dynamics, but no work has been done to determine whether mechanically augmented apical torsion can be used to restore function to failing hearts. In this report, we discuss the potential advantages of this approach and present evidence that turning the cardiac apex by mechanical means can displace a clinically significant volume of blood from failing hearts. Computational models of normal and reduced-function LVs were created to predict the effects of applied apical torsion on ventricular stroke work and wall stress. These same conditions were reproduced in anesthetized pigs with drug-induced heart failure using a custom apical torsion device programmed to rotate over various angles during cardiac systole. Simulations of applied 90 deg torsion in a prolate spheroidal computational model of a reduced-function pig heart produced significant increases in stroke work (25%) and stroke volume with reduced fiber stress in the epicardial region. These calculations were in substantial agreement with corresponding in vivo measurements. Specifically, the computer model predicted torsion-induced stroke volume increases from 13.1 to 14.4 mL (9.9%) while actual stroke volume in a pig heart of similar size and degree of dysfunction increased from 11.1 to 13.0 mL (17.1%). Likewise, peak LV pressures in the computer model rose from 85 to 95 mm Hg (11.7%) with torsion while maximum ventricular pressures in vivo increased in similar proportion, from 55 to 61 mm Hg (10.9%). These data suggest that: (a) the computer model of apical torsion developed for this work is a fair and accurate predictor of experimental outcomes, and (b) supra-physiologic apical torsion may be a viable means to boost cardiac output while avoiding blood contact that occurs with other assist methods.  相似文献   

8.
The effect of an acute temperature increase on the control of the heart of the Antarctic teleost Pagothenia borchgrevinki was examined. Heart rate was thermally independent over the range −1.2°C to 3°C, although increasing the temperature from −1.2°C to 3°C elicited a decrease in ventral aortic pressure. Administration of the muscarinic receptor antagonist atropine and the β-adrenoreceptor antagonist sotalol abolished the thermal independence of heart rate, with heart rate increasing at Q10=2. As temperature was increased from −1.2°C to 3°C, cholinergic tone on the heart also increased, from 44.6±4.2% to 70.0±8.4%. At the same time the adrenergic tone increased from 35.5±3.3% to 43.0±3.1%, but the effect on the heart was masked by the increase of cholinergic tone, leading to the thermal independence of heart rate.  相似文献   

9.
There is a correlation between heart size and the propensity to develop and maintain fibrillation. Atrial and ventricular fibrillation is more easily induced and sustained in large than in small hearts. But other factors are at work as well, such as the ability to hibernate. The hibernator's heart has an adrenergic innervation which is different in distribution than that in nonhibernators with adrenergic nerves in the ventricles exclusively accompanying the blood vessels, thus leaving the myocardium proper without adrenergic innervation. This indicates that the risk of inhomogeneity of the electrophysiological parameters of the myocardial cells at a high sympathetic tone is less in the heart of a hibernator than in that of a nonhibernator.  相似文献   

10.
BACKGROUND INFORMATION: Protein degradation via the UPS (ubiquitin-proteasome system) plays critical roles in muscle metabolism and signalling pathways. The present study investigates temporal requirements of the UPS in muscle using conditional expression of mutant proteasome beta subunits to cause targeted inhibition of proteasome function. RESULTS AND CONCLUSIONS: The Drosophila GeneSwitch system was used, with analyses of the well-characterized larval somatic body wall muscles. This method acutely disrupts proteasome function and causes rapid accumulation of polyubiquitinated proteins, specifically within the muscle. Within 12 h of transgenic proteasome inhibition, there was a gross disorganization of muscle architecture and prominent muscle atrophy, progressing to the arrest of all co-ordinated movement by 24 h. Progressive muscle architecture changes include rapid loss of sarcomere organization, loss of nuclei spacing/patterning, vacuole formation and the accumulation of nuclear and cytoplasmic aggregates at the ultrastructural level. At the neuromuscular junction, the highly specialized muscle membrane folds of the subsynaptic reticulum were rapidly lost. Within 24 h after transgenic proteasome inhibition, muscles contained numerous autophagosomes and displayed highly elevated expression of the endoplasmic reticulum chaperone GRP78 (glucose-regulated protein of 78 kDa), indicating that the loss of muscle maintenance correlates with induction of the unfolded protein response. Taken together, these results demonstrate that the UPS is acutely required for maintenance of muscle and neuromuscular junction architecture, and provides a Drosophila genetic model to mechanistically evaluate this requirement.  相似文献   

11.
12.
Left ventricular (LV) isovolumetric relaxation time (IRT), shape and LV wall movement uniformity were assessed in 102 appropriate for gestational age (AGA) human fetuses and 36 fetuses with intrauterine growth retardation (IUGR). In 28 AGA newborns and 26 IUGR infants rennin and angiotensin 1 concentrations were assessed in umbilical cord blood by radioimmunoassay. Systolic blood pressure (BP) was also measured in these infants. The IRT in IUGR fetuses was more (50.9+/-8.6 ms) than in the AGA fetuses (42.8+/-6.7 ms, p < 0.01). The mean BP in the IUGR newborns was greater (76+/-5 mm Hg vs 60+/-6 mm Hg, p < 0.01) than in the AGA fetuses. Rennin and angiotensin 1 concentrations were 1.61- and 1.56-fold greater in the blood of the IUGR newborns than in the AGA infants. A chronic hypertension in placenta perfusion increase in the IUGR fetuses was proposed. The changes in LV shape and uniformity of wall movement (remodeling) are considered to be the result of chronic increase in afterload. Rennin-angiotensin activation and LV remodeling as an adaptive reactions of antenatal period could promote the arterial hypertension development in later life.  相似文献   

13.
Harding P  Murray DB 《Life sciences》2011,89(19-20):671-676
Although the role of Cox-2 in the heart's response to physiologic stress remains controversial (i.e. expression in myocytes versus other resident myocardial cells) the ever expanding role of prostanoids in multiple models of heart failure cannot be denied. Due to the fact that prostanoids are metabolized rather quickly (half life of seconds to minutes) it is believed these signaling mediators act in a paracrine fashion at the site of production. Evidence to date is quite convincing that these bioactive lipid derivatives are involved in physiologic homeostatic regulation as well as beneficial and maladaptive ventricular remodeling in heart failure. Thus, this review will assess the direct contribution of each PG on remodeling in the left ventricle (e.g. hypertrophy, functional effects, and fibrosis).  相似文献   

14.
Objective: Cardiosphere-derived cells (CDCs) improve cardiac function and attenuate remodeling in ischemic and non-ischemic cardiomyopathy, and are currently obtained through myocardial biopsy. However, there is not any study on whether functional CDCs may be obtained through cadaveric autopsy with similar benefits in non-ischemic cardiomyopathy. Methods: Cardiac tissues from human or mouse cadavers were harvested, plated at 4°C, and removed at varying time points to culture human CDCs (CLH-EDCs) and mouse CDCs (CM-CDCs). The differentiation and paracrine effects of CDCs were also assessed. Furthermore, intramyocardial injection of cadaveric CM-CDCs was performed in an induced dilated cardiomyopathy (DCM) model. Results: With the extension of post mortem hours, the number of CLH-EDCs and CM-CDCs harvested from autopsy specimens decreased. The expressions of von Willebrand factor (VWF) and smooth muscle actin (SMA) on CDCs were gradually reduced, however, cardiac troponin I (TNI) expression increased in the 24 h group compared to the 0 h group. CLH-EDCs were also found to have similar paracrine function in the 24 h group compared to 0 h group. 8 weeks after CM-CDCs transplantion to the injured heart, mean left ventricular ejection fraction increased in both 0 h (64.99 ± 3.4%) and 24 h (62.99 ± 2.8%) CM-CDCs-treated groups as compared to the PBS treated group (53.64 ± 5.6 cm), with a decrease in left ventricular internal diastolic diameter (0.29 ± 0.08 cm and 0.32 ± 0.04 cm in 0 h and 24 h groups, vs. 0.41 ± 0.05 cm in PBS group). Conclusion: CDCs from cadaveric autopsy are highly proliferative and differentiative, and may be used as a source for allograft transplantation, in order to decrease myocardial fibrosis, attenuate left ventricular remodeling, and improve heart function in doxorubicin-induced non-ischemic cardiomyopathy.  相似文献   

15.
16.
Journal of Comparative Physiology B - Acute exposure to hypoxic conditions is a frequent natural event during the development of bird eggs. However, little is known about the effect of such...  相似文献   

17.
Metabolic responses to low temperature in fish muscle   总被引:2,自引:0,他引:2  
For most fish, body temperature is very close to that of the habitat. The diversity of thermal habitats exploited by fish as well as their capacity to adapt to thermal change makes them excellent organisms in which to examine the evolutionary and phenotypic responses to temperature. An extensive literature links cold temperatures with enhanced oxidative capacities in fish tissues, particularly skeletal muscle. Closer examination of inter-species comparisons (i.e. the evolutionary perspective) indicates that the proportion of muscle fibres occupied by mitochondria increases at low temperatures, most clearly in moderately active demersal species. Isolated muscle mitochondria show no compensation of protein-specific rates of substrate oxidation during evolutionary adaptation to cold temperatures. During phenotypic cold acclimation, mitochondrial volume density increases in oxidative muscle of some species (striped bass Morone saxatilis, crucian carp Carassius carassius), but remains stable in others (rainbow trout Oncorhynchus mykiss). A role for the mitochondrial reticulum in distributing oxygen through the complex architecture of skeletal muscle fibres may explain mitochondrial proliferation. In rainbow trout, compensatory increases in the protein-specific rates of mitochondrial substrate oxidation maintain constant capacities except at winter extremes. Changes in mitochondrial properties (membrane phospholipids, enzymatic complement and cristae densities) can enhance the oxidative capacity of muscle in the absence of changes in mitochondrial volume density. Changes in the unsaturation of membrane phospholipids are a direct response to temperature and occur in isolated cells. This fundamental response maintains the dynamic phase behaviour of the membrane and adjusts the rates of membrane processes. However, these adjustments may have deleterious consequences. For fish living at low temperatures, the increased polyunsaturation of mitochondrial membranes should raise rates of mitochondrial respiration which would in turn enhance the formation of reactive oxygen species (ROS), increase proton leak and favour peroxidation of these membranes. Minimisation of mitochondrial oxidative capacities in organisms living at low temperatures would reduce such damage.  相似文献   

18.
Effects of temperature on O2 consumption by mitochondria of the Antarctic fish Trematomus bernacchii were compared with effects obtained with mitochondria from tropical (Sarotheridon mossambica) and temperate zone fishes (Sebastes carnatus and Sebastes mystinus). Arrhenius plots of O2 consumption versus temperature exhibited slope discontinuities (“breaks”) at temperatures (Arrhenius break temperatures: ABTs) reflective of the species' adaptation temperatures. The ABT for mitochondria of T. bernacchii is the lowest reported for any animal and is ∼12 °C below the value predicted by a regression equation based on ABT data for several invertebrates and fishes. The temperature at which the acceptor control ratio (ACR), an index of efficiency of coupling of electron transport to synthesis of ATP, began to decrease with rising temperature also reflected adaptation temperature. The decrease in ACR with rising temperature began at ∼18 °C for mitochondria of T. bernacchii, in contrast to ∼35 °C for mitochondria of Sarotheridon mossambica. Maintaining T. bernacchii at 4 °C for 2 weeks led to no changes in ABT or in the response of ACR to temperature. The thermal sensitivities of mitochondria of T. bernacchii reflect the high level of cold adaptation and stenothermy that is characteristic of Antarctic Notothenioid fishes. Accepted: 5 January 1998  相似文献   

19.
In aerobic tissues, such as cardiac and skeletal muscle, short term increases in energy demand are met primarily by acute regulation of mitochondrial pathways. Chronic increases in time-average metabolic rate of an individual or tissue can lead to modest “physiological adaptations” that may result in increased metabolic capacities and more efficient energy production and utilization. These physiological adaptations differ fundamentally from those which alter metabolic rate acutely. Analysis of the metabolic strategies used by an individual to chronically elevate cardiac metabolic rates may help identify the components of cardiac metabolism which may be constrained or malleable over evolutionary time. While pronounced physiological differences in cardiac energy transduction are apparent across species, the evolutionary origins of such differences are difficult to assess. However, the functional consequences of such differences in homologous tissues across species can be discussed with more certainty. Both chronic hypermetabolic challenges and interspecies comparisons suggest highly oxidative tissues such as heart are restricted to strategies which a) elevate the functional mass b) make more efficient use of intracellular space devoted to mitochondria and c) shift toward more efficient metabolic fuels, primarily fatty acids if oxygen delivery is not a factor.  相似文献   

20.
The cytokine tumor necrosis factor (TNF)-alpha has been causally linked to left ventricular (LV) remodeling, but the molecular basis for this effect is unknown. Matrix metalloproteinases (MMPs) have been implicated in cardiac remodeling and can be regulated by TNF-alpha. This study tested the central hypothesis that administration of a TNF-alpha blocking protein would prevent the induction of MMPs and alter the course of myocardial remodeling in developing LV failure. Adult dogs were randomly assigned to the following groups: 1) chronic pacing (250 beats/min, 28 days, n = 12), 2) chronic pacing with concomitant administration of a TNF-alpha blocking protein (TNF block) using a soluble p75 TNF receptor fusion protein (TNFR:Fc; administered at 0.5 mg/kg twice a week subcutaneously, n = 7), and 3) normal controls (n = 10). LV end-diastolic volume increased from control with chronic pacing (83 +/- 12 vs. 118 +/- 10 ml, P < 0.05) and was reduced with TNF block (97 +/- 9 ml, P < 0.05). MMP zymographic levels (92 kDa, pixels) increased from control with chronic pacing (36,848 +/- 9,593 vs. 87,247 +/- 12,912, P < 0.05) and was normalized by TNF block. Myocardial MMP-9 and MMP-13 levels by immunoblot increased with chronic pacing relative to controls (130 +/- 10% and 118 +/- 6%, P < 0.05) and was normalized by TNF block. These results provide evidence to suggest that TNF-alpha contributes to the myocardial remodeling process in evolving heart failure through the local induction of specific MMPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号