首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hyperthermophilic archaeal strain, KOD1, isolated from a solfatara on Kodakara Island, Japan, has previously been reported as Pyrococcus sp. KOD1. However, a detailed phylogenetic tree, made possible by the recent accumulation of 16S rRNA sequences of various species in the order Thermococcales, indicated that strain KOD1 is a member of the genus Thermococcus. We performed DNA-DNA hybridization tests against species that displayed high similarity in terms of 16S ribosomal DNA sequences, including Thermococcus peptonophilus and Thermococcus stetteri. Hybridization results and differences in growth characteristics and substrate utilization differentiated strain KOD1 from T. peptonophilus and T. stetteri at the species level. Our results indicate that strain KOD1 represents a new species of Thermococcus, which we designate as Thermococcus kodakaraensis KOD1 sp. nov.  相似文献   

2.
Thermococcus sp. strain CL1 is a hyperthermophilic, anaerobic, and heterotrophic archaeon isolated from a Paralvinella sp. polychaete worm living on an active deep-sea hydrothermal sulfide chimney on the Cleft Segment of the Juan de Fuca Ridge. To further understand the distinct characteristics of this archaeon at the genome level, its genome was completely sequenced and analyzed. Here, we announce the complete genome sequence (1,950,313 bp) of Thermococcus sp. strain CL1, with a focus on H(2)- and energy-producing capabilities and its amino acid biosynthesis and acquisition in an extreme habitat.  相似文献   

3.
Analysis of the complete genome of Thermococcus sp. strain AM4, which was the first lithotrophic Thermococcales isolate described and the first archaeal isolate to exhibit a capacity for hydrogenogenic carboxydotrophy, reveals a proximity with Thermococcus gammatolerans, corresponding to close but distinct species that differ significantly in their lithotrophic capacities.  相似文献   

4.
Genomic analysis of a hyperthermophilic archaeon, Thermococcus sp. strain NA1, revealed the presence of a 1,068-bp open reading frame encoding a protein consisting of 356 amino acids with a calculated molecular mass of 39,714 Da (GenBank accession no. DQ144132). Sequence analysis showed that it was similar to the putative aminopeptidase P (APP) of Thermococcus kodakaraensis KOD1. Amino acid residues important for catalytic activity and the metal binding ligands conserved in bacterial, nematode, insect, and mammalian APPs were also conserved in the Thermococcus sp. strain NA1 APP. The archaeal APP, designated TNA1_APP (Thermococcus sp. strain NA1 APP), was cloned and expressed in Escherichia coli. The recombinant enzyme hydrolyzed the amino-terminal Xaa-Pro bond of Lys(Nepsilon-Abz)-Pro-Pro-pNA and the dipeptide Met-Pro (Km, 0.96 mM), revealing its functional identity. Further enzyme characterization showed the enzyme to be a Co2+-, Mn2+-, or Zn2+-dependent metallopeptidase. Optimal APP activity with Met-Pro as the substrate occurred at pH 5 and a temperature of 100 degrees C. The APP was thermostable, with a half-life of >100 min at 80 degrees C. This study represents the first characterization of a hyperthermophilic archaeon APP.  相似文献   

5.
In the previous study, we have found that G65C and I125T double mutant of alpha chaperonin homo-oligomer from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1, lacks ATP-dependent protein refolding activity despite showing ATPase activity and the ability to bind the denatured proteins. In this study, we have characterized several mutant Thermococcus chaperonin homo-oligomers with the amino acid substitutions of Gly-65 or Ile-125. The results showed that amino acid residue at 65th position should be a small amino acid such as glycine or alanine for the ATP-dependent refolding activity. The alpha chaperonin homo-oligomers with amino acid substitution of Gly-65 by amino acids whose side chains are larger than the methyl group did not have ATP-dependent protein refolding activity, but exhibited an increase of the binding affinity for unfolded proteins in the presence of ATP or AMP-PNP. (c)2001 Elsevier Science.  相似文献   

6.
Anaerobic organotrophic hyperthermophilic Archaea were isolated from five of eight samples from oil wells of the Samotlor oil reservoir (depth, 1,799-2,287 m; temperature, 60 degrees-84 degrees C). Three strains were isolated in pure cultures and characterized phylogenetically on the basis of comparison of the 16S rRNA gene sequences. All strains belonged to a new species of the genus Thermococcus, with Thermococcus litoralis, Thermococcus aggregans, Thermococcus fumicolans, and Thermococcus alcaliphilus being the nearest relatives (range of sequence similarity, 97.2%-98.8%). Strain MM 739 was studied in detail. The new isolate grew on peptides but not on carbohydrates. Elemental sulfur had a stimulatory effect on growth. The temperature range for growth was between 40 degrees and 88 degrees C, with the optimum at 78 degrees C; the pH range was 5.8 to 9.0, with the optimum around 7.3; and the salinity range was 0.5% to 7.0%, with the optimum at 1.8%-2.0%. The doubling time at optimal growth conditions was about 43 min. The G+C content of the DNA was 38.4 mol%. The DNA-DNA relatedness between strain MM 739 and T. litoralis was 27%; between strain MM 739 and T. aggregans, it was 22%. Based on the phenotypic and genomic differences with known Thermococcus species, the new species Thermococcus sibiricus is proposed. The isolation of a hyperthermophilic archaeum from a deep subsurface environment, significantly remote from shallow or abyssal marine hot vents, indicates the existence of a subterranean biosphere inhabited by indigenous hyperthermophilic biota.  相似文献   

7.
The thermal death mechanism of microorganisms when heated at lethally high temperatures is still not fully understood. In this study, we examined the relationship between thermal death and degradation of the cell structure in the mesophilic bacterium Escherichia coli strain W3110 and the hyperthermophilic archaeon Thermococcus sp. strain Tc-1-95. By heating the microorganisms at lethally high temperatures only briefly (1.5 s duration) in a flow-type apparatus, we studied the microbial cells at very early and critical stages of the thermal death process. For E. coli, it was found that the loss of viability was not associated with thermal damage to the cell envelope. Deformation of the nucleoid was observed. These results suggest that the thermal death of E. coli is attributed to thermal denaturation or degradation of cytoplasmic molecules. On the other hand, the thermal death of Thermococcus sp. strain Tc-1-95 was strongly associated with rupture of the cell envelope. Furthermore, massive deformation of the S-layer with lethal thermal stress was observed. These results demonstrate that the thermal deaths of the two microorganisms investigated proceed via very different mechanisms. The contrast can be attributed to the difference in their cell envelope structures.  相似文献   

8.
A molecular chaperone prefoldin/GimC from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 was characterized. Pyrococcus prefoldin protected porcine heart citrate synthase from thermal aggregation whereas each subunit alone afforded little protection. It also arrested the spontaneous refolding of acid-denatured green fluorescent protein and then transferred it not only to a group II chaperonin from the hyperthermophilic archaeum Thermococcus sp. strain KS-1, but also to a group I chaperonin from the thermophilic bacterium Thermus thermophilus HB8 for subsequent ATP dependent refolding.  相似文献   

9.
J Heider  X Mai    M W Adams 《Journal of bacteriology》1996,178(3):780-787
Cell extracts of the proteolytic and hyperthermophilic archaea Thermococcus litoralis, Thermococcus sp. strain ES-1, Pyrococcus furiosus, and Pyrococcus sp. strain ES-4 contain an enzyme which catalyzes the coenzyme A-dependent oxidation of branched-chain 2-ketoacids coupled to the reduction of viologen dyes or ferredoxin. This enzyme, termed VOR (for keto-valine-ferredoxin oxidoreductase), has been purified from all four organisms. All four VORs comprise four different subunits and show amino-terminal sequence homology. T. litoralis VOR has an M(r) of ca. 230,000, with subunit M(r) values of 47,000 (alpha), 34,000 (beta), 23,000 (gamma), and 13,000 (delta). It contains about 11 iron and 12 acid-labile sulfide atoms and 13 cysteine residues per heterotetramer (alpha beta gamma delta), but thiamine pyrophosphate, which is required for catalytic activity, was lost during purification. The most efficient substrates (kcat/Km > 1.0 microM-1 s-1; Km < 100 microM) for the enzyme were the 2-ketoacid derivatives of valine, leucine, isoleucine, and methionine, while pyruvate and aryl pyruvates were very poor substrates (kcat/Km < 0.2 microM-1 s-1) and 2-ketoglutarate was not utilized. T. litoralis VOR also functioned as a 2-ketoisovalerate synthase at 85 degrees C, producing 2-ketoisovalerate and coenzyme A from isobutyryl-coenzyme A (apparent Km, 250 microM) and CO2 (apparent Km, 48 mM) with reduced viologen as the electron donor. The rate of 2-ketoisovalerate synthesis was about 5% of the rate of 2-ketoisovalerate oxidation. The optimum pH for both reactions was 7.0. A mechanism for 2-ketoisovalerate oxidation based on data from substrate-induced electron paramagnetic resonance spectra is proposed, and the physiological role of VOR is discussed.  相似文献   

10.
The distribution of culturable hyperthermophiles was studied in relation to environmental conditions in the Kubiki oil reservoir in Japan, where the temperature was between 50 and 58 degrees C. Dominant hyperthermophilic cocci and rods were isolated and shown to belong to the genera Thermococcus and Thermotoga, respectively, by 16S rDNA analyses. Using the most-probable-number method, we found that hyperthermophilic cocci were widely distributed in several unconnected fault blocks in the Kubiki oil reservoir. In 1996 to 1997, their populations in the production waters from oil wells were 9.2 x 10(3) to 4.6 x 10(4) cells/ml, or 10 to 42% of total cocci. On the other hand, hyperthermophilic rods were found in only one fault block of the reservoir with populations less than 10 cells/ml. Dominant Thermococcus and Thermotoga spp. grew at reservoir temperatures and utilized amino acids and sugars, respectively, as sole carbon sources. While organic carbon was plentiful in the environment, these hyperthermophiles were unable to grow in the formation water due to lack of essential nutrients. Concentrations of some organic and inorganic substances differed among fault blocks, indicating that the movement of formation water between fault blocks was restricted. This finding suggests that the supply of nutrients via fluid current is limited in this subterranean environment and that the organisms are starved in the oil reservoir. Under starved conditions at 50 degrees C, culturable cells of Thermococcus sp. remained around the initial cell density for about 200 days, while those of Thermotoga sp. decreased exponentially to 0. 01% of the initial cell density after incubation for the same period. The difference in survivability between these two hyperthermophiles seems to reflect their populations in the fault blocks. These results indicate that hyperthermophilic cocci and rods adapt to the subterranean environment of the Kubiki oil reservoir by developing an ability to survive under starved conditions.  相似文献   

11.
Genomic analysis of Thermococcus sp. NA revealed the presence of a 3,927-base-pair (bp) family B-type DNA polymerase gene, TNA1_pol. TNA1_pol, without its intein, was overexpressed in Escherichia coli, purified using metal affinity chromatography, and characterized. TNA1_pol activity was optimal at pH 7.5 and 75 degrees C. TNA1_pol was highly thermostable, with a half-life of 3.5 h at 100 degrees C and 12.5 h at 95 degrees C. Polymerase chain reaction parameters of TNA1_pol such as error-rate, processivity, and extension rate were measured in comparison with rTaq, Pfu, and KOD DNA polymerases. TNA1_pol averaged one incorrect bp every 4.45 kilobases (kb), and had a processivity of 150 nucleotides (nt) and an extension rate of 60 bases/s. Thus, TNA1_pol has a much faster elongation rate than Pfu DNA polymerase with 7-fold higher fidelity than that of rTaq.  相似文献   

12.
An NADP(H)-dependent alcohol dehydrogenase was isolated from the hyperthermophilic archaeon Thermococcus strain AN1. This enzyme is a homotetramer with a subunit molecular weight of 46,700. The enzyme oxidizes a series of primary linear alcohols but not methanol. The pH and temperature optima with ethanol as the substrate are 6.8 to 7.0 and 85 degrees C, respectively. The enzyme readily reduced acetaldehyde with NADPH as the cofactor. The gene encoding this enzyme has been cloned and sequenced. An open reading frame of 1,218 bp, starting with ATG and ending with TGA, was identified and corresponded to 406 amino acids. Sequence comparisons show that this Thermococcus strain AN1 enzyme has significant homologies with enzymes from the newly defined type III alcohol dehydrogenase family. Thermococcus strain AN1 alcohol dehydrogenase is the first archaeal enzyme belonging to this family.  相似文献   

13.
A strictly anaerobic, dissimilatory Fe(III)-reducing hyperthermophilic archaeon, designated as strain IOH1T, was isolated from a new deep-sea hydrothermal vent (Onnuri Vent Field) area in the Central Indian Ocean ridge. Strain IOH1T showed > 99% 16S rRNA gene sequence similarity with Thermococcus celericrescens TS2T (99.4%) and T. siculi DSM 12349T (99.2%). Additional three species T. barossii SHCK-94T (99.0%), T. celer Vu13T (98.8%), and T. piezophilus (98.6%) showed > 98.6% of 16S rRNA gene sequence similarity, however, the maximum OrthoANI value is 89.8% for the genome of T. celericrescens TS2T. Strain IOH1T cells are coccoid, 1.2–1.8 μm in diameter, and motile by flagella. Growth was at 70–82°C (optimum 80°C), pH 5.4–8.0 (optimum pH 6.0) with 2–4% (optimum 3%) NaCl. Growth of strain IOH1T was enhanced by starch, pyruvate, D(+)-maltose and maltodextrin as a carbon sources, and elemental sulfur as an electron acceptor; clearly different from those of related species T. celecrescens DSM 17994T and T. siculi DSM 12349T. Strain IOH1T, T. celercrescence DSM 17994T, and T. siculi DSM 12349T reduced soluble Fe(III)-citrate present in the medium, whereas the amount of total cellular proteins increased with the concomitant accumulation of Fe(II). We determined a circular chromosome of 2,234 kb with an extra-chromosomal archaeal plasmid, pTI1, of 7.7 kb and predicted 2,425 genes. The DNA G + C content was 54.9 mol%. Based on physiological properties, phylogenetic, and genome analysis, we proposed that strain IOH1T (= KCTC 15844T = JCM 39077T) is assigned to a new species in the genus Thermococcus and named Thermococcus indicus sp. nov.  相似文献   

14.
OGL-20P(T)-358 is a novel 66 amino acid residue protein from the hyperthermophile Thermococcus thioreducens sp. nov., strain OGL-20PT, which was collected from the wall of the hydrothermal black smoker in the Rainbow Vent along the mid-Atlantic ridge. This protein, which has no detectable sequence homology with proteins or domains of known function, has a calculated pI of 4.76 and a molecular mass of 8.2 kDa. We report here the backbone 1H, 15N, and 13C resonance assignments of OGL-20PT-358. Assignments are 97.5% (316/324) complete. Chemical shift index was used to determine the secondary structure of the protein, which appears to consist of primarily alpha-helical regions. This work is the foundation for future studies to determine the three-dimensional solution structure of the protein.  相似文献   

15.
The starvation survivability of seven Thermococcus strains isolated from four Japanese oil reservoirs was compared with that of Thermococcus strains from marine hydrothermal fields. 16S rDNA analyses showed the isolates to be closely related to Thermococcus litoralis. Growth of the isolates was dependent on amino acids, which were present at low concentrations in the oil reservoirs. At 80 degrees C in the formation water, strain CKU-1 from the oil reservoir showed a higher starvation survivability than strain KS-1 from the marine hydrothermal field. Crude oil did not affect the starvation survivability of strain CKU-1, but it reduced that of strain KS-1. These results indicate that strain CKU-1 could survive longer than stain KS-1 under the conditions of an oil reservoir. At 90 degrees C in artificial seawater without organic nutrients, the half-lives of the isolates were between 7.7 and 25.1 days. However, those of the strains from marine hydrothermal fields, except Thermococcus litoralis and Thermococcus chitonophagus, were less than 1.0 day. The higher starvation survivability is probably important for the hyperthermophiles to continue to exist in a hot subterranean oil reservoir where the supply of nutrients seems to be limited.  相似文献   

16.
An extremely thermophilic, sulfur-dependent archaeon, strain WT1, was isolated from a freshwater hot spring in the Lake Taupo area of North Island, New Zealand. The cells are flagellated, strictly anaerobic cocci that grow optimally at 85 °C and 5.4 g NaCl l–1. The strain grows heterotrophically on complex proteinaceous substrates or on appropriate salts plus amino acid mixtures and is also able to utilize maltose, starch, and pyruvate. Elemental sulfur could be replaced by cystine or thioglycollate. The range of temperatures allowing growth is from 60 to 90 °C; the pH supporting growth ranges from 5 to 8 (optimum, pH 7). Strain WT1 grew in a defined medium containing amino acids as the sole carbon and energy sources. The required amino acids were: Arg, His, Ile, Leu, Phe, Ser, Thr, Trp, Tyr, and Val. Strain WT1 showed sensitivity to rifampicin. DNA G+C content was 50.4 mol%. Phylogenetic analysis of the sequence encoding the 16S rRNA gene indicated that this isolate is a member of the Thermococcales. DNA/DNA hybridization studies revealed no similarity to several species of Thermococcus and Pyrococcus, with the exception of Thermococcus zilligii. Based on the reported results, we propose strain WT1 as a new species to be named Thermococcus waiotapuensis sp. nov. Received: 5 January 1999 / Accepted: 19 May 1999  相似文献   

17.
Thermococcus onnurineus NA1, a sulfur-reducing hyperthermophilic archaeon, was isolated from a deep-sea hydrothermal vent area in Papua New Guinea. The strain requires elemental sulfur as a terminal electron acceptor for heterotrophic growth on peptides, amino acids and sugars. Recently, genome sequencing of Thermococcus onnurineus NA1 was completed. In this study, 2-DE/MS–MS analysis of the cytosolic proteome was performed to elucidate the metabolic characterization of Thermococcus onnurineus NA1 at the protein level. Among the 1,136 visualized protein spots, 110 proteins were identified. Enzymes related to metabolic pathways of amino acids utilization, glycolysis, pyruvate conversion, ATP synthesis, and protein synthesis were identified as abundant proteins, highlighting the fact that these are major metabolic pathways in Thermococcus onnurineus NA1. Interestingly, multiple spots of phosphoenolpyruvate synthetase and elongation factor Tu were found on 2D gels generated by truncation at the N-terminus, implicating the cellular regulatory mechanism of this key enzyme by protease degradation. In addition to the proteins involved in metabolic systems, we also identified various proteases and stress-related proteins. The proteomic characterization of abundantly induced proteins using 2-DE/MS–MS enables a better understanding of Thermococcus onnurineus NA1 metabolism.  相似文献   

18.
Iizuka R  Ueno T  Morone N  Funatsu T 《PloS one》2011,6(7):e22253
Group II chaperonins found in archaea and in eukaryotic cytosol mediate protein folding without a GroES-like cofactor. The function of the cofactor is substituted by the helical protrusion at the tip of the apical domain, which forms a built-in lid on the central cavity. Although many studies on the change in lid conformation coupled to the binding and hydrolysis of nucleotides have been conducted, the molecular mechanism of lid closure remains poorly understood. Here, we performed a single-molecule polarization modulation to probe the rotation of the helical protrusion of a chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1. We detected approximately 35° rotation of the helical protrusion immediately after photorelease of ATP. The result suggests that the conformational change from the open lid to the closed lid state is responsible for the approximately 35° rotation of the helical protrusion.  相似文献   

19.
We describe a new species, Thermococcus litoralis, which is different from the type species Thermococcus celer in molecular, morphological and physiological characteristics.Abbreviations 3 x SSC (standard saline citrate) - 0.45 M NaCl 0.045 M Na3-citrate  相似文献   

20.
Fourteen strains of hyperthermophilic organotrophic anaerobic marine Archaea were isolated from shallow water and deep-sea hot vents, and four of them were characterized. These isolates, eight previously published strains, and six type strains of species of the order Thermococcales were selected for the study of cell wall components by means of thin sectioning or freeze-etching electron microscopy. The cell envelopes of most isolates were shown to consist of regularly arrayed surface protein layers, either single or double, with hexagonal lattice (p6) symmetry, as the exclusive constituents outside the cytoplasmic membrane. The S-layers studied differed in center-to-center spacing and molecular mass of the constituent protein subunits. Polyclonal antisera raised against the cells of 10 species were found to be species-specific and allowed 12 new isolates from shallow water hot vents to be identified as representatives of the species Thermococcus litoralis, Thermococcus stetteri, Thermococcus chitonophagus, and Thermococcus pacificus. Of the 7 deep-sea isolates, only 1 was identified as a T. litoralis strain. Thus, hyperthermophilic marine organotrophic isolates obtained from deep-sea hot vents showed greater diversity with regard to their S-layer proteins than shallow water isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号