首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Breast cancer cells that have undergone partial epithelial–mesenchymal transition (EMT) are believed to be more invasive than cells that have completed EMT. To study metabolic reprogramming in different mesenchymal states, we analyzed protein expression following EMT in the breast epithelial cell model D492 with single-shot LFQ supported by a SILAC proteomics approach. The D492 EMT cell model contains three cell lines: the epithelial D492 cells, the mesenchymal D492M cells, and a partial mesenchymal, tumorigenic variant of D492 that overexpresses the oncogene HER2. The analysis classified the D492 and D492M cells as basal-like and D492HER2 as claudin-low. Comparative analysis of D492 and D492M to tumorigenic D492HER2 differentiated metabolic markers of migration from those of invasion. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) was one of the top dysregulated enzymes in D492HER2. Gene expression analysis of the cancer genome atlas showed that GFPT2 expression was a characteristic of claudin-low breast cancer. siRNA-mediated knockdown of GFPT2 influenced the EMT marker vimentin and both cell growth and invasion in vitro and was accompanied by lowered metabolic flux through the hexosamine biosynthesis pathway (HBP). Knockdown of GFPT2 decreased cystathionine and sulfide:quinone oxidoreductase (SQOR) in the transsulfuration pathway that regulates H2S production and mitochondrial homeostasis. Moreover, GFPT2 was within the regulation network of insulin and EGF, and its expression was regulated by reduced glutathione (GSH) and suppressed by the oxidative stress regulator GSK3-β. Our results demonstrate that GFPT2 controls growth and invasion in the D492 EMT model, is a marker for oxidative stress, and associated with poor prognosis in claudin-low breast cancer.  相似文献   

2.
Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.  相似文献   

3.
Cadherins have been thought to facilitate the assembly of connexins (Cxs) into gap junctions (GJs) by enhancing cell-cell contact, however the molecular mechanisms involved in this process have remained unexplored. We examined the assembly of GJs composed of Cx43 in isogenic clones derived from immortalized and nontransformed rat liver epithelial cells that expressed either epithelial cadherin (E-Cad), which curbs the malignant behavior of tumor cells, or neuronal cadherin (N-Cad), which augments the invasive and motile behavior of tumor cells. We found that N-cad expression attenuated the assembly of Cx43 into GJs, whereas E-Cad expression facilitated the assembly. The expression of N-Cad inhibited GJ assembly by causing endocytosis of Cx43 via a nonclathrin-dependent pathway. Knock down of N-Cad by ShRNA restored GJ assembly. When both cadherins were simultaneously expressed in the same cell type, GJ assembly and disassembly occurred concurrently. Our findings demonstrate that E-Cad and N-Cad have opposite effects on the assembly of Cx43 into GJs in rat liver epithelial cells. These findings imply that GJ assembly and disassembly are the down-stream targets of the signaling initiated by E-Cad and N-Cad, respectively, and may provide one possible explanation for the disparate role played by these cadherins in regulating cell motility and invasion during tumor progression and invasion.  相似文献   

4.
5.
摘要 目的:探讨肝细胞癌(HCC)癌组织神经降压素(NTS)、鞘氨醇-1-磷酸转运体2(SPNS2)、热休克蛋白75(Mortalin)表达与上皮间质转化(EMT)标志物、临床病理特征和预后的关系。方法:选取2010年1月~2017年1月联勤保障部队第九〇〇医院仓山院区收治的90例HCC患者,采用免疫组化法检测患者癌组织和对应癌旁组织中NTS、SPNS2、Mortalin及EMT标志物N-钙粘蛋白(N-Cad)、E-钙粘蛋白(E-Cad)表达情况。分析NTS、SPNS2、Mortalin表达与HCC患者EMT标志物、临床病理特征和预后的关系。结果:HCC癌组织中NTS、SPNS2、Mortalin、N-Cad阳性表达率高于癌旁组织,E-Cad阳性表达率低于癌旁组织(P<0.05)。Pearson相关性分析显示,HCC癌组织中NTS、SPNS2、Mortalin表达水平与N-Cad表达水平呈正相关,与E-Cad表达水平呈负相关(P<0.05)。 HCC癌组织中NTS、SPNS2、Mortalin表达与Child-Pugh分级、血管侵犯、巴塞罗那临床肝癌(BCLC)分期、淋巴结转移、远处转移有关(P<0.05)。90例HCC患者术后5年总生存率为48.89%(44/90)。Kaplan-Meier生存曲线分析显示,NTS、SPNS2、Mortalin阳性组总生存率分别低于NTS、SPNS2、Mortalin阴性组(P<0.05)。结论:HCC癌组织中NTS、SPNS2、Mortalin表达上调,与EMT、Child-Pugh分级、血管侵犯、BCLC分期、淋巴结转移、远处转移和预后有关,可作为HCC病情及预后的辅助评估指标。  相似文献   

6.
7.
Zhao X  Malhotra GK  Band H  Band V 《PloS one》2012,7(4):e35338
There is increasing evidence that breast and other cancers originate from and are maintained by a small fraction of stem/progenitor cells with self-renewal properties. Recent molecular profiling has identified six major subtypes of breast cancer: basal-like, ErbB2-overexpressing, normal breast epithelial-like, luminal A and B, and claudin-low subtypes. To help understand the relationship among mammary stem/progenitor cells and breast cancer subtypes, we have recently derived distinct hTERT-immortalized human mammary stem/progenitor cell lines: a K5(+)/K19(-) type, and a K5(+)/K19(+) type. Under specific culture conditions, bipotent K5(+)/K19(-) stem/progenitor cells differentiated into stable clonal populations that were K5(-)/K19(-) and exhibit self-renewal and unipotent myoepithelial differentiation potential in contrast to the parental K5(+)/K19(-) cells which are bipotent. These K5(-)/K19(-) cells function as myoepithelial progenitor cells and constitutively express markers of an epithelial to mesenchymal transition (EMT) and show high invasive and migratory abilities. In addition, these cells express a microarray signature of claudin-low breast cancers. The EMT characteristics of an un-transformed unipotent mammary myoepithelial progenitor cells together with claudin-low signature suggests that the claudin-low breast cancer subtype may arise from myoepithelial lineage committed progenitors. Availability of immortal MPCs should allow a more definitive analysis of their potential to give rise to claudin-low breast cancer subtype and facilitate biological and molecular/biochemical studies of this disease.  相似文献   

8.
Collagen XV (COLXV) is a secreted non-fibrillar collagen found within basement membrane (BM) zones of the extracellular matrix (ECM). Its ability to alter cellular growth in vitro and to reduce tumor burden and increase survival in vivo support a role as a tumor suppressor. Loss of COLXV during the progression of several aggressive cancers precedes basement membrane invasion and metastasis. The resultant lack of COLXV subjacent to the basement membrane and subsequent loss of its interactions with other proteins in this zone may directly impact tumor progression. Here we show that COLXV significantly reduces invasion of pancreatic adenocarcinoma cells through a collagen I (COLI) matrix. Moreover, we demonstrate that epithelial to mesenchymal transition (EMT) in these cells, which is recapitulated in vitro by cell scattering on a COLI substrate, is inhibited by over-expression of COLXV. We identify critical collagen-binding surface receptors on the tumor cells, including the discoidin domain receptor 1 (DDR1) and E-Cadherin (E-Cad), which interact with COLXV and appear to mediate its function. In the presence of COLXV, the intracellular redistribution of E-Cad from the cell periphery, which is associated with COLI-activated EMT, is inhibited and concurrently, DDR1 signaling is suppressed. Furthermore, continuous exposure of the pancreatic adenocarcinoma cells to high levels of COLXV suppresses endogenous levels of N-Cadherin (N-Cad). These data reveal a novel mechanism whereby COLXV can function as a tumor suppressor in the basement membrane zone.  相似文献   

9.
Embryonic cells are classified into two types of cells by their morphology, epithelial and mesenchymal cells. During dynamic morphogenesis in development, epithelial cells often switch to mesenchymal by the process known as epithelial-to-mesenchymal transition (EMT). EMT is a central issue in cancer metastasis where epithelial-derived tumor cells are converted to mesenchymal with high mobility. Although many molecules have been identified to be involved in the EMT mostly by in vitro studies, in vivo model systems have been limited. We here established a novel model with which EMT can be analyzed directly in the living body. By an electroporation technique, we targeted a portion of the lateral plate mesoderm that forms epithelial cell sheets delineating the kidney region, called nephric coelomic epithelium (Neph-CE). Enhanced green fluorescent protein-electroporated Neph-CE retained the epithelial integrity without invading into the underling stroma (mesonephros). The Neph-CE transgenesis further allowed us to explore EMT inducers in vivo, and to find that Ras-Raf and RhoA signals were potent inducers. Live-imaging confocal microscopy revealed that during EMT processes cells started extending cellular protrusions toward the stroma, followed by translocation of their cell bodies. Furthermore, we established a long-term tracing of EMT-induced cells, which were dynamically relocated within the kidney stroma. The Neph-CE-transgenesis will open a way to study cellular and molecular mechanisms underlying EMT directly in actual body.  相似文献   

10.
Branching morphogenesis is a mechanism used by many species for organogenesis and tissue maintenance. Receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and the sprouty protein family are believed to be critical regulators of branching morphogenesis. The aim of this study was to analyze the expression of Sprouty-2 (SPRY2) in the mammary gland and study its role in branching morphogenesis. Human breast epithelial cells, breast tissue and mouse mammary glands were used for expression studies using immunoblotting, real rime PCR and immunohistochemistry. Knockdown of SPRY2 in the breast epithelial stem cell line D492 was done by lentiviral transduction of shRNA constructs targeting SPRY2. Three dimensional culture of D492 with or without endothelial cells was done in reconstituted basement membrane matrix. We show that in the human breast, SPRY2 is predominantly expressed in the luminal epithelial cells of both ducts and lobuli. In the mouse mammary gland, SPRY2 expression is low or absent in the virgin state, while in the pregnant mammary gland SPRY2 is expressed at branching epithelial buds with increased expression during lactation. This expression pattern is closely associated with the activation of the EGFR pathway. Using D492 which generates branching structures in three-dimensional (3D) culture, we show that SPRY2 expression is low during initiation of branching with subsequent increase throughout the branching process. Immunostaining locates expression of phosphorylated SPRY2 and EGFR at the tip of lobular-like, branching ends. SPRY2 knockdown (KD) resulted in increased migration, increased pERK and larger and more complex branching structures indicating a loss of negative feedback control during branching morphogenesis. In D492 co-cultures with endothelial cells, D492 SPRY2 KD generates spindle-like colonies that bear hallmarks of epithelial to mesenchymal transition. These data indicate that SPRY2 is an important regulator of branching morphogenesis and epithelial to mesenchymal transition in the mammary gland.  相似文献   

11.
Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic.  相似文献   

12.
13.
Tumor stem cell theory may well explain a variety of malignant behaviors of tumors. Cells undergoing epithelial-mesenchymal transition (EMT) share many characteristics with tumor stem cells. Our previous studies showed that extracellular -5'- nucleotidase (CD73), one of the important surface markers of mesenchymal stem cells, may promote growth and metastasis of breast cancer cells both in vivo and in vitro. In this study, we assessed breast cancer stem cell (BCSC) markers [acetaldehyde dehydrogenase (ALDH)+ and CD44+CD24?] in various breast cancer cell lines with flow cytometry after overexpression (by lentivirus infection) or suppression (by siRNA interference) of CD73. We measured CD73 expression in breast cancer mammospheres with real-time PCR and western blots. Finally, we examined the expression of CD73 and EMT markers in different breast cancer cell lines, as well as in mammary cells (MCF10A) that underwent EMT induced by transforming growth factor beta (TGF-β). We found that CD73 positively correlated with ALDH+ or CD44+CD24? subsets of breast cancer cells. CD73 was expressed more in breast cancer mammospheres than in adherent cells. CD73 and mesenchymal marker expression was higher in breast cancer cells with more malignant features, while CD73 was lower in low malignant breast cancer cells with higher epithelial markers. Furthermore, CD73 expression increased during the process of TGF-β-induced EMT. Our results indicate that CD73 may play an important role in BCSCs.  相似文献   

14.
15.
Epithelial stem cells self-renew while maintaining multipotency, but the dependence of stem cell properties on maintenance of the epithelial phenotype is unclear. We previously showed that trophoblast stem (TS) cells lacking the protein kinase MAP3K4 maintain properties of both stemness and epithelial-mesenchymal transition (EMT). Here, we show that MAP3K4 controls the activity of the histone acetyltransferase CBP, and that acetylation of histones H2A and H2B by CBP is required to maintain the epithelial phenotype. Combined loss of MAP3K4/CBP activity represses expression of epithelial genes and causes TS cells to undergo EMT while maintaining their self-renewal and multipotency properties. The expression profile of MAP3K4-deficient TS cells defines an H2B acetylation-regulated gene signature that closely overlaps with that of human breast cancer cells. Taken together, our data define an epigenetic switch that maintains the epithelial phenotype in TS cells and reveals previously unrecognized genes potentially contributing to breast cancer.  相似文献   

16.
The epithelial to mesenchymal transition (EMT) is a developmental program in which epithelial cells down-regulate their cell-cell junctions, acquire spindle cell morphology and exhibit cellular motility. In human breast cancer, invasion into surrounding tissue is the first step in metastatic progression. Here, we devised an in vitro model using selected cell lines, which recapitulates many features of EMT as observed in human breast cancer. By comparing the gene expression profiles of claudin-low breast cancers with the experimental model, we identified a 9-gene signature characteristic of EMT. This signature was found to distinguish a series of breast cancer cell lines that have demonstrable, classical EMT hallmarks, including loss of E-cadherin protein and acquisition of N-cadherin and vimentin expression. We subsequently developed a three-dimensional model to recapitulate the process of EMT with these cell lines. The cells maintain epithelial morphology when encapsulated in a reconstituted basement membrane, but undergo spontaneous EMT and invade into surrounding collagen in the absence of exogenous cues. Collectively, this model of EMT in vitro reveals the behaviour of breast cancer cells beyond the basement membrane breach and recapitulates the in vivo context for further investigation into EMT and drugs that may interfere with it.  相似文献   

17.
18.
During cancer progression, malignant cells undergo epithelial-mesenchymal transitions (EMT) and mesenchymal-epithelial transitions (MET) as part of a broad invasion and metastasis program. We previously observed MET events among lung metastases in a preclinical model of prostate adenocarcinoma that suggested a relationship between epithelial plasticity and metastatic spread. We thus sought to translate these findings into clinical evidence by examining the existence of EMT in circulating tumor cells (CTC) from patients with progressive metastatic solid tumors, with a focus on men with castration-resistant prostate cancer (CRPC) and women with metastatic breast cancer. We showed that the majority (> 80%) of these CTCs in patients with metastatic CRPC coexpress epithelial proteins such as epithelial cell adhesion molecule (EpCAM), cytokeratins (CK), and E-cadherin, with mesenchymal proteins including vimentin, N-cadherin and O-cadherin, and the stem cell marker CD133. Equally, we found that more than 75% of CTCs from women with metastatic breast cancer coexpress CK, vimentin, and N-cadherin. The existence and high frequency of these CTCs coexpressing epithelial, mesenchymal, and stem cell markers in patients with progressive metastases has important implications for the application and interpretation of approved methods to detect CTCs.  相似文献   

19.
The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and also in the tumor invasion process. In addition, EMT also causes disruption of cell-cell adherence, loss of apico-basal polarity, matrix remodeling, increased motility and invasiveness in promoting tumor metastasis. The tumor microenvironment plays an important role in facilitating cancer metastasis and may induce the occurrence of EMT in tumor cells. A large number of inflammatory cells infiltrating the tumor site, as well as hypoxia existing in a large area of tumor, in addition many stem cells present in tumor microenvironment, such as cancer stem cells (CSCs), mesenchymal stem cells (MSCs), all of these may be the inducers of EMT in tumor cells. The signaling pathways involved in EMT are various, including TGF-β, NF-κB, Wnt, Notch, and others. In this review, we discuss the current knowledge about the role of the tumor microenvironment in EMT and the related signaling pathways as well as the interaction between them.  相似文献   

20.
摘要 目的:探讨非小细胞肺癌(NSCLC)组织p21激活激酶(PAK)4、PAK5蛋白表达与上皮-间质转化(EMT)、临床病理特征和预后的关系。方法:选取2018年1月~2019年12月我院收治的100例NSCLC患者,收集手术切除的癌组织和癌旁组织标本,采用免疫组化法检测NSCLC组织和癌旁组织中PAK4、PAK5和EMT相关蛋白[E-钙粘蛋白(E-Cad)、N-钙粘蛋白(N-Cad)和波形蛋白(VIM)]表达。分析PAK4、PAK5蛋白表达与NSCLC患者病理特征的关系和与EMT相关蛋白的相关性。根据NSCLC组织中PAK4、PAK5表达分为阳性/阴性表达组,采用K-M法绘制PAK4、PAK5阳性/阴性表达NSCLC患者的生存曲线,多因素Cox回归分析NSCLC患者死亡的影响因素。结果:与癌旁组织相比,NSCLC组织中PAK4、PAK5、N-Cad、VIM蛋白阳性表达率升高,E-Cad蛋白阳性表达率降低(P<0.05)。二列相关性分析显示,NSCLC组织PAK4、PAK5与E-Cad蛋白阳性表达率呈负相关,与N-Cad、VIM蛋白阳性表达率呈正相关(P均<0.001)。不同分化程度、TNM分期、淋巴结转移NSCLC患者PAK4、PAK5蛋白阳性表达率比较,差异有统计学意义(P<0.05)。100例NSCLC患者3年总生存率为56.00%(56/100)。K-M生存曲线分析显示,PAK4、PAK5阳性表达组总生存率低于阴性表达组(P<0.05)。多因素Cox回归分析显示,低分化、TNM分期为ⅢA期、淋巴结转移和PAK4、PAK5蛋白阳性表达为NSCLC患者死亡的独立危险因素(P<0.05)。结论:NSCLC组织PAK4、PAK5蛋白表达升高,与EMT、分化程度、TNM分期、淋巴结转移和预后有关,可能成为NSCLC诊治的新靶点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号