首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indigestible polysaccharides, such as dietary fibers, benefit the host by improving the intestinal environment. Short-chain fatty acids (SCFAs) produced by gut microbial fermentation from dietary fibers exert various physiological effects. The bacterial polysaccharide curdlan benefits the host intestinal environment, although its effect on energy metabolism and SCFA production remains unclear. Hence, this study aimed to elucidate the effect of curdlan intake on gut microbial profiles, SCFA production, and energy metabolism in a high-fat diet (HFD)-induced obese mouse model. Gut microbial composition of fecal samples from curdlan-supplemented HFD-fed mice indicated an elevated abundance of Bacteroidetes, whereas a reduced abundance of Firmicutes was noted at the phylum level compared with that in cellulose-supplemented HFD-fed mice. Moreover, curdlan supplementation resulted in an abundance of the family Bacteroidales S24-7 and Erysipelotrichaceae, and a reduction in Deferribacteres in the feces. Furthermore, curdlan supplementation elevated fecal SCFA levels, particularly butyrate. Although body weight and fat mass were not affected by curdlan supplementation in HFD-induced obese mice, HFD-induced hyperglycemia was significantly suppressed with an increase in plasma insulin and incretin GLP-1 levels. Curdlan supplementation elevated fecal bile acid and SCFA production, improved host metabolic functions by altering the gut microbial composition in mice.  相似文献   

2.
3.
Growth hormone (GH) signaling stimulates the production of IGF‐1; however, increased GH signaling may induce insulin resistance and can reduce life expectancy in both mice and humans. Interestingly, disruption of GH signaling by reducing plasma GH levels significantly improves health span and extends lifespan in mice, as observed in Ames dwarf mice. In addition, these mice have increased adiposity, yet are more insulin sensitive compared to control mice. Metabolic stressors such as high‐fat diet (HFD) promote obesity and may alter longevity through the GH signaling pathway. Therefore, our objective was to investigate the effects of a HFD (metabolic stressor) on genetic mechanisms that regulate metabolism during aging. We show that Ames dwarf mice fed HFD for 12 weeks had an increase in subcutaneous and visceral adiposity as a result of diet‐induced obesity, yet are more insulin sensitive and have higher levels of adiponectin compared to control mice fed HFD. Furthermore, energy expenditure was higher in Ames dwarf mice fed HFD than in control mice fed HFD. Additionally, we show that transplant of epididymal white adipose tissue (eWAT) from Ames dwarf mice fed HFD into control mice fed HFD improves their insulin sensitivity. We conclude that Ames dwarf mice are resistant to the detrimental metabolic effects of HFD and that visceral adipose tissue of Ames dwarf mice improves insulin sensitivity in control mice fed HFD.  相似文献   

4.
5.
This study explores the anti-obesity properties of a Sasa quelpaertensis leaf extract (SQE) in high-fat diet (HFD)-induced obese C57BL/6 mice and mature 3T3-L1 adipocytes. SQE administration with HFD for 70 d significantly decreased the body weight gain, adipose tissue weight, and serum total cholesterol and triglyceride levels in comparison with the HFD group. SQE administration also reduced the serum levels of glutamic oxaloacetic transaminase, glutamic pyruvic transaminase and lactate dehydrogenase, and the accumulation of lipid droplets in the liver, suggesting a protective effect against HFD-induced hepatic steatosis. SQE administration restored the HFD-induced decreases with phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in epididymal adipose tissue. SQE also induced AMPK phosphorylation in mature 3T3-L1 adipocytes. These results suggest that SQE exerted an anti-obesity effect on HFD-induced obese mice by activating AMPK in adipose tissue and reducing lipid droplet accumulation in the liver.  相似文献   

6.
BackgroundObesity has become a major global health challenge due to its increasing prevalence, and the associated health risk. It is the main cause of various metabolic diseases including diabetes, hypertension, cardiovascular disease, stroke and certain forms of cancer.

Methods and Results

In the present study we evaluated the anti-obesity property of Daesiho-tang (DSHT), an herbal medicine, using high fat diet (HFD)-induced obese mice as a model. Our results showed that DSHT ameliorated body weight gain, decreased total body fat, regulated expression of leptin and adiponectin genes of adipose tissue and exerted an anti-diabetic effect by attenuating fasting glucose level and serum insulin level in HFD-fed animals. In addition, DSHT-treatment significantly reduced total cholesterol (TC), triglycerides (TG) and increased high density lipoprotein-cholesterol (HDL), glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT) levels in serum and reduced deposition of fat droplets in liver. DSHT treatment resulted in significantly increased relative abundance of bacteria including Bacteroidetes, Bacteroidetes/Firmicutes ratio, Akkermansia Bifidobacterium., Lactobacillus, and decreased the level of Firmicutes. Using RT2 profiler PCR array, 39 (46%) genes were found to be differentially expressed in HFD-fed mice compared to normal control. However, normal gene expressions were restored in 36 (92%) genes of HFD-fed mice, when co-exposed to DSHT.

Conclusion/Major Findings

The results of this study demonstrated that DSHT is an effective herbal formulation in attenuation of obesity in HFD-fed mice through alteration of gene expressions and modulation of intestinal microbiota.  相似文献   

7.
Gut microbiota dysbiosis has been implicated in a variety of systemic disorders, notably metabolic diseases including obesity and impaired liver function, but the underlying mechanisms are uncertain. To investigate this question, we transferred caecal microbiota from either obese or lean mice to antibiotic‐free, conventional wild‐type mice. We found that transferring obese‐mouse gut microbiota to mice on normal chow (NC) acutely reduces markers of hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non‐inoculated mice, a phenotypic trait blunted in conventional NOD2 KO mice. Furthermore, transferring of obese‐mouse microbiota changes both the gut microbiota and the microbiome of recipient mice. We also found that transferring obese gut microbiota to NC‐fed mice then fed with a high‐fat diet (HFD) acutely impacts hepatic metabolism and prevents HFD‐increased hepatic gluconeogenesis compared to non‐inoculated mice. Moreover, the recipient mice exhibit reduced hepatic PEPCK and G6Pase activity, fed glycaemia and adiposity. Conversely, transfer of lean‐mouse microbiota does not affect markers of hepatic gluconeogenesis. Our findings provide a new perspective on gut microbiota dysbiosis, potentially useful to better understand the aetiology of metabolic diseases.  相似文献   

8.
Obesity increases severity of acute pancreatitis (AP) by unclear mechanisms. We investigated the effect of the PPAR-gamma agonist rosiglitazone (RGZ, 0.01% in the diet) on severity of AP induced by administration of IL-12+ IL-18 in male C57BL6 mice fed a low fat (LFD) or high fat diet (HFD), under the hypothesis that RGZ would reduce disease severity in HFD-fed obese animals. In both LFD and HFD mice without AP, RGZ significantly increased body weight and % fat mass, with significant upregulation of adiponectin and suppression of erythropoiesis. In HFD mice with AP, RGZ significantly increased survival and hastened recovery from pancreatic inflammation, as evaluated by significantly improved pancreatic histology, reduced saponification of visceral adipose tissue and less severe suppression of erythropoiesis at Day 7 post-AP. This was associated with significantly lower circulating and pancreas-associated levels of IL-6, Galectin-3, osteopontin and TIMP-1 in HFD + RGZ mice, particularly at Day 7 post-AP. In LFD mice with AP, RGZ significantly worsened the degree of intrapancreatic acinar and fat necrosis as well as visceral fat saponification, without affecting other parameters of disease severity or inflammation. Induction of AP lead to major suppression of adiponectin levels at Day 7 in both HFD and HFD + RGZ mice. In conclusion, RGZ prevents development of severe AP in obese mice even though it significantly increases adiposity, indicating that obesity can be dissociated from AP severity by improving the metabolic and inflammatory milieu. However, RGZ worsens selective parameters of AP severity in LFD mice.  相似文献   

9.

Background & Aims

While it is widely accepted that obesity is associated with low-grade systemic inflammation, the molecular origin of the inflammation remains unknown. Here, we investigated the effect of endotoxin-induced inflammation via TLR4 signaling pathway at both systemic and intestinal levels in response to a high-fat diet.

Methods

C57BL/6J and TLR4-deficient C57BL/10ScNJ mice were maintained on a low-fat (10 kcal % fat) diet (LFD) or a high–fat (60 kcal % fat) diet (HFD) for 8 weeks.

Results

HFD induced macrophage infiltration and inflammation in the adipose tissue, as well as an increase in the circulating proinflammatory cytokines. HFD increased both plasma and fecal endotoxin levels and resulted in dysregulation of the gut microbiota by increasing the Firmicutes to Bacteriodetes ratio. HFD induced the growth of Enterobecteriaceae and the production of endotoxin in vitro. Furthermore, HFD induced colonic inflammation, including the increased expression of proinflammatory cytokines, the induction of Toll-like receptor 4 (TLR4), iNOS, COX-2, and the activation of NF-κB in the colon. HFD reduced the expression of tight junction-associated proteins claudin-1 and occludin in the colon. HFD mice demonstrated higher levels of Akt and FOXO3 phosphorylation in the colon compared to the LFD mice. While the body weight of HFD-fed mice was significantly increased in both TLR4-deficient and wild type mice, the epididymal fat weight and plasma endotoxin level of HFD-fed TLR4-deficient mice were 69% and 18% of HFD-fed wild type mice, respectively. Furthermore, HFD did not increase the proinflammatory cytokine levels in TLR4-deficient mice.

Conclusions

HFD induces inflammation by increasing endotoxin levels in the intestinal lumen as well as in the plasma by altering the gut microbiota composition and increasing its intestinal permeability through the induction of TLR4, thereby accelerating obesity.  相似文献   

10.
Pharmacological stimulation of adipose tissue remodeling and thermogenesis to increase energy expenditure is expected to be a viable therapeutic strategy for obesity. Berberine has been reported to have pharmacological activity in adipose tissue to anti-obesity, while the mechanism remains unclear. Here, we observed that berberine significantly reduced the body weight and insulin resistance of high-fat diet mice by promoting the distribution of brown adipose tissue and thermogenesis. We have further demonstrated that berberine activated energy metabolic sensing pathway AMPK/SIRT1 axis to increase the level of PPARγ deacetylation, which leads to promoting adipose tissue remodeling and increasing the expression of the thermogenic protein UCP-1. These findings suggest that berberine that enhances the AMPK/SIRT1 pathway can act as a selective PPARγ activator to promote adipose tissue remodeling and thermogenesis. This study proposes a new mechanism for the regulation of berberine in adipose tissue and offers a great prospect for berberine in obesity treatment  相似文献   

11.
BackgroundGinseng has therapeutic potential for treating obesity and the associated gut microbiota dysbiosis. However, whether white ginseng and red ginseng, the two kinds of commonly used processed ginseng, possess different anti-obesity effects remains unknown.PurposeAnti-obesity effects of water extracts of white ginseng and red ginseng (WEWG and WERG) were compared, and the potential mechanisms were discussed.MethodsChemical profiles of WEWG and WERG were characterized by ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) and high performance liquid chromatography coupled with evaporative light scattering detector (HPLC-ELSD). Anti-obesity effects of WEWG/WERG were examined by determining fat accumulation, systemic inflammation, enteric metabolic disorders and gut microbiota dysbiosis in high-fat diet (HFD)-fed obese mice.ResultsBoth WEWG and WERG exerted anti-obesity effects, with WEWG stronger than WERG. Compared to WERG, WEWG contained less contents of carbohydrates (polysaccharides, oligosaccharides, free monosaccharides) and ginsenosides, but chemical structures or compositions of these components in WEWG were characteristic, i.e. narrower molecular weight distribution and higher molar ratios of glucose residues of polysaccharides; higher content ratios of oligosaccharides DP2–3 (di-/tri-saccharides)-to-oligosaccharides DP4–7 (tetra-/penta-/hexa-/hepta-saccharides), sucrose-to-melibiose, maltose-to-trehalose and high-polar-to-low-polar ginsenosides. WEWG better ameliorated fat accumulation, enteric metabolic disorders and gut microbiota dysbiosis in HFD-fed obese mice than WERG.ConclusionThe stronger anti-obesity effect of white ginseng appears to correlate with differences in its chemical profile as compared to red ginseng. The carbohydrates and ginsenosides in WEWG potentially present more structural and compositional specificity to the obesity-associated gut bacteria, allowing more beneficial effects of WEWG on the gut microbiota dysbiosis. This consequently better alleviates the enteric metabolic disorders and systemic inflammation, thereby contributing to the stronger anti-obesity effect of WEWG as compared to WERG.  相似文献   

12.
The present study examined the anti-obesity effect and mechanism of action of Korean white ginseng extracts (KGE) using high-fat diet (HFD)-induced obese mice. Mice were fed a low-fat diet (LFD), HFD or HFD containing 0.8 and 1.6% (w/w) KGE diet (HFD + 0.8KGE and HFD + 1.6KGE) for 8 weeks. We also examined the effects of KGE on plasma triglyceride (TG) elevation in mice administrated with oral lipid emulsion. Body weight gain and white adipose tissue (WAT) weight were significantly decreased in the HFD + 1.6KGE group, compared with the HFD group. The plasma TG levels were also significantly reduced in both HFD + 0.8KGE and HFD + 1.6KGE groups, while leptin levels were significantly decreased in only the HFD + 1.6KGE group, compared with the HFD group. The HFD + 1.6KGE group showed significantly lower mRNA levels of lipogenesis-related genes, including peroxisome proliferator-activated receptorγ2 (PPARγ2), sterol regulatory element binding protein-1c (SREBP-1c), lipoprotein lipase (LPL), fatty acid synthase (FAS) and diacylglycerol acyltransferase 1 (DGAT1), compared with the HFD group. In addition, a dose of 1000 mg/kg KGE inhibited the elevation of plasma TG levels compared with mice given the lipid emulsion alone. These results suggest that the anti-obesity effects of KGE may be elicited by regulating expression of lipogenesis-related genes in WAT and by delaying intestinal fat absorption.  相似文献   

13.
Sun B  Yang G  Yang M  Liu H  Boden G  Li L 《Cytokine》2012,59(1):131-137
High-fat diet (HFD) is associated with insulin resistance, hyperinsulinemia, elevated plasma free fatty acid (FFA), and increased risk for atherosclerotic vascular disease. However, the mechanisms underlying the HFD-induced insulin resistance have not been fully clarified. The aim of present study is to evaluate the effects of long-term HFD on the regulation of the insulin-sensitizing fibroblast growth factor-21 (FGF-21) and visfatin in ApoE(-/-) mice. A total of twenty male ApoE(-/-) mice were randomly divided into normal chow diet (NC) or HFD (HF) group for 16 weeks. Euglycemic-hyperinsulinemic clamp was performed to evaluate insulin sensitivity in this animal model. Both mRNA and protein contents of FGF-21 and visfatin were assayed by Quantitative real-time PCR and Western blot. Long-term HFD resulted in the marked abnormality of glucose and lipid metabolism as well as a large decrease in whole-body insulin sensitivity. Accompanied by abnormal glucose-lipid metabolism and aggravated insulin resistance, FGF-21, β-klotho, FGFR1, FGFR3 and FGFR4 mRNA expressions were markedly up-regulated, whereas visfatin mRNA expression was markedly down-regulated in liver and/or adipose tissue of HFD-fed mice. In addition, Western blotting also revealed both up-regulation of the FGF-21 protein and down-regulation of visfatin protein in liver, adipose tissue and plasma of HFD-fed mice. Both FGF-21 and visfatin expression and secretion are regulated by a potent regulator, long-term HFD. And these adipokines are associated with glucose-lipid metabolism and insulin resistance.  相似文献   

14.
This study was conducted to investigate the effects of a high-fat diet (HFD) and high-fat and high-cholesterol diet (HFHCD) on glucose and lipid metabolism and on the intestinal microbiota of the host animal. A total of 30 four-week-old female C57BL/6 mice were randomly divided into three groups (n=10) and fed with a normal diet (ND), HFD, or HFHCD for 12 weeks, respectively. The HFD significantly increased body weight and visceral adipose accumulation and partly lowered oral glucose tolerance compared with the ND and HFHCD. The HFHCD increased liver weight, liver fat infiltration, liver triglycerides, and liver total cholesterol compared with the ND and HFD. Moreover, it increased serum high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total cholesterol compared with the ND and HFD and upregulated alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase significantly. The HFHCD also significantly decreased the α-diversity of the fecal bacteria of the mice, to a greater extent than the HFD. The composition of fecal bacteria among the three groups was apparently different. Compared with the HFHCD-fed mice, the HFD-fed mice had more Oscillospira, Odoribacter, Bacteroides, and [Prevotella], but less [Ruminococcus] and Akkermansia. Cecal short-chain fatty acids were significantly decreased after the mice were fed the HFD or HFHCD for 12 weeks. Our findings indicate that an HFD and HFHCD can alter the glucose and lipid metabolism of the host animal differentially; modifications of intestinal microbiota and their metabolites may be an important underlying mechanism.  相似文献   

15.
Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is a receptor for oxidized LDL, and is strongly expressed in endothelial cells at an early stage of atherosclerosis. LOX-1 expression in adipocytes is induced by PPARγ (ligands and appears to be involved in adipocyte cholesterol metabolism. However, the role of adipose tissue LOX-1 in high-fat diet-induced obesity is unknown. We found that mRNA levels of adipose tissue LOX-1 were markedly increased in obese mice fed a high-fat diet (HFD) compared with those fed normal chow. The levels were closely correlated with those of a proinflammatory cytokine, monocyte chemoattractant protein-1 (MCP-1). Then, LOX-1 knockout (LOX-1-KO) and wild-type (WT) mice were fed HFD for 16 weeks. HFD feeding increased the body and mesenteric fat weights similarly in WT and LOX-1-KO mice. HFD-induced expressions of proinflammatory cytokines such as MCP-1, MIP-1α, and IL-6 were significantly less in LOX-1-KO than WT mice. Thus, LOX-1 is required for the HFD-induced expression of proinflammatory cytokines in the adipose tissue of obese mice.  相似文献   

16.
17.
We investigated the relationship between gut health, visceral fat dysfunction and metabolic disorders in diet-induced obesity. C57BL/6J mice were fed control or high saturated fat diet (HFD). Circulating glucose, insulin and inflammatory markers were measured. Proximal colon barrier function was assessed by measuring transepithelial resistance and mRNA expression of tight-junction proteins. Gut microbiota profile was determined by 16S rDNA pyrosequencing. Tumor necrosis factor (TNF)-α and interleukin (IL)-6 mRNA levels were measured in proximal colon, adipose tissue and liver using RT-qPCR. Adipose macrophage infiltration (F4/80+) was assessed using immunohistochemical staining. HFD mice had a higher insulin/glucose ratio (P = 0.020) and serum levels of serum amyloid A3 (131%; P = 0.008) but reduced circulating adiponectin (64%; P = 0.011). In proximal colon of HFD mice compared to mice fed the control diet, transepithelial resistance and mRNA expression of zona occludens 1 were reduced by 38% (P<0.001) and 40% (P = 0.025) respectively and TNF-α mRNA level was 6.6-fold higher (P = 0.037). HFD reduced Lactobacillus (75%; P<0.001) but increased Oscillibacter (279%; P = 0.004) in fecal microbiota. Correlations were found between abundances of Lactobacillus (r = 0.52; P = 0.013) and Oscillibacter (r = −0.55; P = 0.007) with transepithelial resistance of the proximal colon. HFD increased macrophage infiltration (58%; P = 0.020), TNF-α (2.5-fold, P<0.001) and IL-6 mRNA levels (2.5-fold; P = 0.008) in mesenteric fat. Increased macrophage infiltration in epididymal fat was also observed with HFD feeding (71%; P = 0.006) but neither TNF-α nor IL-6 was altered. Perirenal and subcutaneous adipose tissue showed no signs of inflammation in HFD mice. The current results implicate gut dysfunction, and attendant inflammation of contiguous adipose, as salient features of the metabolic dysregulation of diet-induced obesity.  相似文献   

18.
Obesity is characterised by excessive accumulation of fat in white adipose tissue (WAT) which is compartmentalised into two anatomically and functionally diverse depots - visceral and subcutaneous. Advice to substitute essential polyunsaturated fatty acids (PUFAs) for saturated fatty acids is a cornerstone of various obesity management strategies. Despite an array of reports on the role of essential PUFAs on obesity, there still exists a lacuna on their mode of action in distinct depots i.e. visceral (VWAT) and subcutaneous (SWAT). The present study aimed to evaluate the effect of fish oil and corn oil on VWAT and SWAT in high-fat-diet-induced rodent model of obesity. Fish oil (FO) supplementation positively ameliorated the effects of HFD by regulating the anthropometrical and serum lipid parameters. FO led to an overall reduction in fat mass in both depots while specifically inducing beiging of adipocytes in SWAT as indicated by increased UCP1 and PGC1α. We also observed an upregulation of AMPKα and ACC1/2 phosphorylation on FO supplementation in SWAT suggesting a role of AMPK-PGC1α-UCP1 axis in beiging of adipose tissue. On the other hand, corn oil supplementation did not show any improvements in adipose tissue metabolism in both the depots of adipose tissue. The results were analysed using one-way ANOVA followed by Tukey's test in Graphpad Prism 5.0. Combined together our results suggest that n-3 PUFAs exert their anti-obesity effect by regulating adipokine secretion and inducing beiging of SWAT, hence increasing energy expenditure via thermogenic upregulation.  相似文献   

19.
Maternal deprivation (MD) during neonatal life has diverse long-term effects, including modification of metabolism. We have previously reported that MD modifies the metabolic response to high-fat diet (HFD) intake, with this response being different between males and females, while previous studies indicate that in mice with HFD-induced obesity, endocannabinoid (EC) levels are markedly altered in various brown and white adipose tissue depots. Here, we analyzed the effects of MD (24 h at postnatal day 9), alone or in combination with a HFD from weaning until the end of the experiment in Wistar rats of both sexes. Brown and white perirenal and subcutaneous adipose tissues were collected and the levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) were determined. In males, MD increased the content of OEA in brown and 2-AG in subcutaneous adipose tissues, while in females the content of 2-AG was increased in perirenal fat. Moreover, in females, MD decreased AEA and OEA levels in perirenal and subcutaneous adipose tissues, respectively. HFD decreased the content of 2-AG in brown fat of both sexes and OEA in brown and subcutaneous adipose tissue of control females. In contrast, in subcutaneous fat, HFD increased AEA levels in MD males and OEA levels in control and MD males. The present results show for the first time that MD and HFD induce sex-dependent effects on the main ECs, AEA, and 2-AG, and of AEA-related mediators, OEA and PEA, in the rat brown and white (visceral and subcutaneous) adipose tissues.  相似文献   

20.
The trillions of microbes that inhabit the human gut (the microbiota) together with the host comprise a complex ecosystem, and like any ecosystem, health relies on stability and balance. Some of the most important members of the human microbiota are those that help maintain this balance via modulation of the host immune system. Gut microbes, through both molecular factors (such as capsular components) and by-products of their metabolism (such as Short Chain Fatty Acids (SCFAs)), can influence both innate and adaptive components of the immune system, in ways that can drive both effector, and regulatory responses. Here we review how commensal microbes can specifically promote a dynamic balance of these immune responses in the mammalian gut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号