首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermophilic lactic acid bacterium Streptococcus thermophilus is widely and traditionally used in the dairy industry. Despite the vast level of consumption of S. thermophilus through yogurt or probiotic functional food, very few data are available about its physiology in the gastrointestinal tract (GIT). The objective of the present work was to explore both the metabolic activity and host response of S. thermophilus in vivo. Our study profiles the protein expression of S. thermophilus after its adaptation to the GIT of gnotobiotic rats and describes the impact of S. thermophilus colonization on the colonic epithelium. S. thermophilus colonized progressively the GIT of germ-free rats to reach a stable population in 30 days (10(8) cfu/g of feces). This progressive colonization suggested that S. thermophilus undergoes an adaptation process within GIT. Indeed, we showed that the main response of S. thermophilus in the rat's GIT was the massive induction of the glycolysis pathway, leading to formation of lactate in the cecum. At the level of the colonic epithelium, the abundance of monocarboxylic acid transporter mRNAs (SLC16A1 and SLC5A8) and a protein involved in the cell cycle arrest (p27(kip1)) increased in the presence of S. thermophilus compared with germ-free rats. Based on different mono-associated rats harboring two different strains of S. thermophilus (LMD-9 or LMG18311) or weak lactate-producing commensal bacteria (Bacteroides thetaiotaomicron and Ruminococcus gnavus), we propose that lactate could be a signal produced by S. thermophilus and modulating the colon epithelium.  相似文献   

2.
A potential food-grade cloning vector, pND919, was constructed and transformed into S. thermophilus ST3-1, a plasmid-free strain. The vector contains DNAs from two different food-approved organisms, Streptococcus thermophilus and Lactococcus lactis. The 5.0-kb pND919 is a derivative of the cloning vector pND918 (9.3 kb) and was constructed by deletion of the 4.3-kb region of pND918 which contained DNA from non-food-approved organisms. pND919 carries a heterologous native cadmium resistance selectable marker from L. lactis M71 and expresses the Cd(r) phenotype in S. thermophilus transformants. With the S. thermophilus replicon derived from the shuttle vector pND913, pND919 is able to replicate in the two S. thermophilus industrial strains tested, ST3-1 and ST4-1. Its relatively high retention rate in S. thermophilus further indicates its usefulness as a potential food-grade cloning vector. To our knowledge, this is the first report of a replicative potential food-grade vector for the industrially important organism S. thermophilus.  相似文献   

3.
Four Streptococcus thermophilus strains ( Strep. thermophilus BTC, Strep. thermophilus LY03, Strep. thermophilus 480 and Strep. thermophilus Sfi20) have been examined for their exopolysaccharide production capacity. All strains produced a polymer composed of the neutral sugars glucose and galactose, but in different ratios. It was clearly shown that the biosynthesis of exopolysaccharides from Strep. thermophilus LY03 is growth-associated and hence displays primary metabolite kinetics. The monomer ratio of the exopolysaccharide synthesized did not vary throughout the fermentation cycle. The production kinetics and exopolysaccharide yields were strongly dependent on the fermentation conditions. Physical factors such as temperature, pH and oxygen tension as well as chemical factors (medium composition, initial lactose concentration, carbon/nitrogen levels) were of utmost importance.  相似文献   

4.
We investigated the preventive effect of Streptococcus thermophilus YIT 2001, a lactic acid bacterum having high antioxidative activity, on acute colitis induced by 2.5% dextran sulfate sodium in mice, and compared the effect with that of S. thermophilus YIT 2084 which has lower antioxidative activity. Feeding S. thermophilus YIT 2001 decreased the disease activity index and level of lipid peroxide (the thiobarbituric acid reactive substance content) in the colonic mucosa. The hematocrit and hemoglobin concentrations in the blood of S. thermophilus YIT 2001-fed mice were higher than those of the control mice. S. thermophilus YIT 2084 had no significant effect on these parameters. The results suggest that the antioxidative activity of S. thermophilus YIT 2001 was involved in the improving effect on colitis.  相似文献   

5.
Catalytic properties of the elongation factors from Thermus thermophilus HB8 have been studied and compared with those of the factors from Escherichia coli. 1. The formation of a ternary guanine-nucleotide . EF-Tu . EF-Ts complex was demonstrated by gel filtration of the T. thermophilus EF-Tu . EF-Ts complex on a Sephadex G-150 column equilibrated with guanine nucleotide. The occurrence of this type of complex has not yet been proved with the factors from E. coli. 2. The dissociation constants for the complexes of T. thermophilus EF-Tu . EF-Ts with GDP and GTP were 6.1 x 10(-7) M and 1.9 x 10(-6) M respectively. On the other hand, T. thermophilus EF-Tu interacted with GDP and GTP with dissociation constants of 1.1 x 10(-9) M and 5.8 x 10(-8) M respectively. This suggests that the association of EF-Ts with EF-Tu lowered the affinity of EF-Tu for GDP by a factor of about 600 and facilitated the nucleotide exchange reaction. 3. Although the T. thermophilus EF-Tu . EF-Ts complex hardly dissociates into EF-Tu and EF-Ts, a rapid exchange was observed between free EF-Ts and the EF-Tu . EF-Ts complex using 3H-labelled EF-Ts. The exchange reaction was independent on the presence or absence of guanine nucleotides. 4. Based on the above findings, an improved reaction mechanism for the regeneration of EF-Tu . GTP from EF-Tu . GDP is proposed. 5. Studies on the functional interchangeability of EF-Tu and EF-Ts between T. thermophilus and E. coli has revealed that the factors function much more efficiently in the homologous than in the heterologous combination. 6. T. thermophilus EF-Ts could bind E. coli EF-Tu to form an EF-Tu (E. coli) . EF-Ts (T. thermophilus hybrid complex. The complex was found to exist in a dimeric form indicating that the property to form a dimer is attributable to T. thermophilus EF-Ts. On the other hand, no stable complex between E. coli EF-Ts and T. thermophilus EF-Tu has been isolated. 7. The uncoupled GTPase activity of T. thermophilus EF-G was much lower than that of E. coli EF-G. T. thermophilus EF-G formed a relatively stable binary EF-G . GDP complex, which could be isolated on a nitrocellulose membrane filter. The Kd values for EF-G . GDP and EF-G . GTP were 6.7 x 10(-7) M and 1.2 x 10(-5) M respectively. The ternary T. thermophilus EF-G . GDP . ribosome complex was again very stable and could be isolated in the absence of fusidic acid. The stability of the latter complex is probably the cause of the low uncoupled GTPase activity of T. thermophilus EF-G.  相似文献   

6.
Molecular properties of the polypeptide chain elongation factors from Thermus thermophilus HB8 have been investigated and compared with those from Escherichia coli. 1. As expected, the factors purified from T. thermophilus were exceedingly heat-stable. Even free EF-Tu not complexed with GDP was stable after heating for 5 min at 60 degrees C. 2. GDP binding activity of T. thermophilus EF-Tu was also stable in various protein denaturants, such as 5.5 M urea, 1.5 M guanidine-HCl, and 4 M LiCl. 3. Amino acid compositions of EF-Tu and EF-G from T. thermophilus were similar to those from E. coli. On the other hand, amino acid composition of T. thermophilus EF-Ts was considerably different from that of E. coli EF-Ts. 4. In contrast to E. coli EF-Tu, T. thermophilus EF-Tu contained no free sulfhydryl group, but one disulfide bond. The disulfide bond was cleaved by sodium borohydride or sodium sulfite under native conditions. The heat stability of the reduced EF-Tu . GDP, as measured by GDP binding activity, did not differ from that of the untreated EF-Tu . GDP. 5. T. thermophilus EF-Ts contained, in addition to one disulfide bond, a sulfhydryl group which could be titrated only after complete denaturation of the protein. 6. Under native conditions one sulfhydryl group of T. thermophilus EF-G was titrated with p-chloromercuribenzoate, while the rate of reaction was very sluggish. The sulfhydryl group appears to be essential for interaction with ribosomes, whereas the ability to form a binary GDP . EF-G complex was not affected by its modification. The protein contained also one disulfide bond. 7. Circular dichroic spectra of EF-Tu from T. thermophilus and E. coli were very similar. Binding of GDP or GTP caused a similar spectral change in both. T. thermophilus and E. coli EF-Tu. On the other hand, the spectra of T. thermophilus EF-G and E. coli EF-G were significantly different, the content of ordered structure being higher in the former as compared to the latter.  相似文献   

7.
8.
Streptococcus thermophilus is the archetype of lactose-adapted bacterium and so far, its sugar metabolism has been mainly investigated in vitro. The objective of this work was to study the impact of lactose and lactose permease on S. thermophilus physiology in the gastrointestinal tract (GIT) of gnotobiotic rats. We used rats mono-associated with LMD-9 strain and receiving 4.5% lactose. This model allowed the analysis of colonization curves of LMD-9, its metabolic profile, its production of lactate and its interaction with the colon epithelium. Lactose induced a rapid and high level of S. thermophilus in the GIT, where its activity led to 49 mM of intra-luminal L-lactate that was related to the induction of mono-carboxylic transporter mRNAs (SLC16A1 and SLC5A8) and p27(Kip1) cell cycle arrest protein in epithelial cells. In the presence of a continuous lactose supply, S. thermophilus recruited proteins involved in glycolysis and induced the metabolism of alternative sugars as sucrose, galactose, and glycogen. Moreover, inactivation of the lactose transporter, LacS, delayed S. thermophilus colonization. Our results show i/that lactose constitutes a limiting factor for colonization of S. thermophilus, ii/that activation of enzymes involved in carbohydrate metabolism constitutes the metabolic signature of S. thermophilus in the GIT, iii/that the production of lactate settles the dialogue with colon epithelium. We propose a metabolic model of management of carbohydrate resources by S. thermophilus in the GIT. Our results are in accord with the rationale that nutritional allegation via consumption of yogurt alleviates the symptoms of lactose intolerance.  相似文献   

9.
The mutM (fpg) gene, which encodes a DNA glycosylase that excises an oxidatively damaged form of guanine, was cloned from an extremely thermophilic bacterium, Thermus thermophilus HB8. Its nucleotide sequence encoded a 266 amino acid protein with a molecular mass of approximately 30 kDa. Its predicted amino acid sequence showed 42% identity with the Escherichia coli protein. The amino acid residues Cys, Asn, Gln and Met, known to be chemically unstable at high temperatures, were decreased in number in T.thermophilus MutM protein compared to those of the E.coli one, whereas the number of Pro residues, considered to increase protein stability, was increased. The T.thermophilus mutM gene complemented the mutability of the E.coli mutM mutY double mutant, suggesting that T. thermophilus MutM protein was active in E.coli. The T.thermophilus MutM protein was overproduced in E.coli and then purified to homogeneity. Size-exclusion chromatography indicated that T. thermophilus MutM protein exists as a more compact monomer than the E.coli MutM protein in solution. Circular dichroism measurements indicated that the alpha-helical content of the protein was approximately 30%. Thermus thermophilus MutM protein was stable up to 75 degrees C at neutral pH, and between pH 5 and 11 and in the presence of up to 4 M urea at 25 degrees C. Denaturation analysis of T.thermophilus MutM protein in the presence of urea suggested that the protein had at least two domains, with estimated stabilities of 8.6 and 16.2 kcal/mol-1, respectively. Thermus thermophilus MutM protein showed 8-oxoguanine DNA glycosylase activity in vitro at both low and high temperatures.  相似文献   

10.
Streptococcus thermophilus is widely used in the dairy industry but little is known about its peptidase system. The aim of this study was to determine the biochemical and genetic characteristics of this system, and to compare it to the well known system of Lactococcus lactis . We separated the intracellular proteins of Strep. thermophilus CNRZ 302 and L. lactis NCDO 763 by ion-exchange chromatography and we detected the activity of the different types of peptidases. In both L. lactis and Strep. thermophilus strains, we showed 13 different peptidase activities with biochemical homologies between both species. Streptococcus thermophilus also possessed two peptidases which we did not find in L. lactis : an aminopeptidase and an oligopeptidase. We performed Southern blot experiments and among the eight peptidase genes tested, only the genes encoding the general aminopeptidases, pepC and pepN , were homologous between the L. lactis and Strep. thermophilus strains. Besides biochemical and genetic similarities, the peptidase systems of Strep. thermophilus and L. lactis thus differed by the presence of additional peptidases in Strep. thermophilus .  相似文献   

11.
The ruvB genes of the highly divergent thermophilic eubacteria Thermus thermophilus and Thermotoga maritima were cloned, sequenced, and expressed in Escherichia coli. Both thermostable RuvB proteins were purified to homogeneity. Like E. coli RuvB protein, both purified thermostable RuvB proteins showed strong double-stranded DNA-dependent ATPase activity at their temperature optima (> or = 70 degrees C). In the absence of ATP, T. thermophilus RuvB protein bound to linear double-stranded DNA with a preference for the ends. Addition of ATP or gamma-S-ATP destabilized the T. thermophilus RuvB-DNA complexes. Both thermostable RuvB proteins displayed helicase activity on supercoiled DNA. Expression of thermostable T. thermophilus RuvB protein in the E. coli ruvB recG mutant strain N3395 partially complemented the UV-sensitive phenotype, suggesting that T. thermophilus RuvB protein has a function similar to that of E. coli RuvB in vivo.  相似文献   

12.
Streptococcus thermophilus is widely used for the manufacture of yoghurt and Swiss or Italian-type cheeses. These products have a market value of approximately 40 billion dollars per year, making S. thermophilus a species that has major economic importance. Even though the fermentation properties of this bacterium have been gradually improved by classical methods, there is great potential for further improvement through genetic engineering. Due to the recent publication of three complete genome sequences, it is now possible to use a rational approach for designing S. thermophilus starter strains with improved properties. Progress in this field, however, is hampered by a lack of genetic tools. Therefore, we developed a system, based on natural transformation, which makes genetic manipulations in S. thermophilus easy, rapid, and highly efficient. The efficiency of this novel tool should make it possible to construct food-grade mutants of S. thermophilus, opening up exciting new possibilities that should benefit consumers as well as the dairy industry.  相似文献   

13.
The sequence of the 32 N-terminal amino acids of the NADH oxidase from the extreme thermophile, Thermus thermophilus HB8, was used to synthesize oligonucleotides to probe for the respective gene in a genomic library of T. thermophilus HB8. The gene encoding the NADH oxidase, designated nox, was cloned, its nucleotide sequence was determined and found to be colinear with the N-terminal sequence of the enzyme. The molecular mass of 26835 Da, as deduced from the nox gene, agrees with that of the purified NADH oxidase from T. thermophilus HB8 (25,000 Da), as estimated by polyacrylamide gel electrophoresis under denaturing conditions. The nox gene was overexpressed in Escherichia coli and a protocol for the rapid purification of the enzyme was developed. The E. coli-borne T. thermophilus HB8 NADH oxidase has properties identical to those of the authentic T. thermophilus HB8 enzyme and possesses a high thermal stability.  相似文献   

14.
The monomer composition of the exopolysaccharides (EPS) produced by Streptococcus thermophilus LY03 and S. thermophilus Sfi20 were evaluated by high-pressure liquid chromatography with amperometric detection and nuclear magnetic resonance spectroscopy. Both strains produced the same EPS composed of galactose, glucose, and N-acetylgalactosamine. Further, it was demonstrated that the activity of the precursor-producing enzyme UDP-N-acetylglucosamine 4-epimerase, converting UDP-N-acetylglucosamine into UDP-N-acetylgalactosamine, is responsible for the presence of N-acetylgalactosamine in the EPS repeating units of both strains. The activity of UDP-N-acetylglucosamine 4-epimerase was higher in both S. thermophilus strains than in a non-EPS-producing control strain. However, the level of this activity was not correlated with EPS yields, a result independent of the carbohydrate source applied in the fermentation process. On the other hand, both the amounts of EPS and the carbohydrate consumption rates were influenced by the type of carbohydrate source used during S. thermophilus Sfi20 fermentations. A correlation between activities of the enzymes alpha-phosphoglucomutase, UDP-glucose pyrophosphorylase, and UDP-galactose 4-epimerase and EPS yields was seen. These experiments confirm earlier observed results for S. thermophilus LY03, although S. thermophilus Sfi20 preferentially consumed glucose for EPS production instead of lactose in contrast to the former strain.  相似文献   

15.
The mutS gene, implicated in DNA mismatch repair, was cloned from an extremely thermophilic bacterium, Thermus thermophilus HB8. Its nucleotide sequence encoded a 819-amino acid protein with a molecular mass of 91.4 kDa. Its predicted amino acid sequence showed 56 and 39% homology with Escherichia coli MutS and human hMsh2 proteins, respectively. The T.thermophilus mutS gene complemented the hypermutability of the E.coli mutS mutant, suggesting that T.thermophilus MutS protein was active in E.coli and could interact with E.coli MutL and/or MutH proteins. The T.thermophilus mutS gene product was overproduced in E.coli and then purified to homogeneity. Its molecular mass was estimated to be 91 kDa by SDS-PAGE but approx. 330 kDa by size-exclusion chromatography, suggesting that T.thermophilus MutS protein was a tetramer in its native state. Circular dichroic measurements indicated that this protein had an alpha-helical content of approx. 50%, and that it was stable between pH 1.5 and 12 at 25 degree C and was stable up to 80 degree C at neutral pH. Thermus thermophilus MutS protein hydrolyzed ATP to ADP and Pi, and its activity was maximal at 80 degrees C. The kinetic parameters of the ATPase activity at 65 degrees C were Km = 130 microM and Kcat = 0.11 s(-1). Thermus thermophilus MutS protein bound specifically with G-T mismatched DNA even at 60 degrees C.  相似文献   

16.
The S-layers of Thermus thermophilus HB27 and T. thermophilus HB8 are composed of protein units of 95 kDa (P95) and 100 kDa (P100), respectively. We have selected S-layer deletion mutants from both strains by complete replacement of the slpA gene. Mutants of the two strains showed similar defects in growth and morphology and overproduced an external cell envelope inside of which cells remained after division. However, the nature of this external layer is strain specific, being easily stained and regular in the HB8 delta slpA derivative and amorphous and poorly stained in the HB27 delta slpA strain. The addition of chromosomic DNA from T. thermophilus HB8 to growing cultures of T. thermophilus HB27 delta slpA led to the selection of a new strain, HB27C8, which expressed a functional S-layer composed of the P100 protein. Conversely, the addition of chromosomic DNA from T. thermophilus HB27 to growing cultures of T. thermophilus HB8 delta slpA allowed the isolation of strain HB8C27, which expressed a functional S-layer composed of the P95 protein. The driving force which selected the transference of the S-layer genes in these experiments was the difference in growth rates, one of the main factors leading to selection in natural environments.  相似文献   

17.
The nusG gene of Thermus thermophilus HB8 was cloned and sequenced. It is located 388 bp downstream from tufB, which is followed by the genes for ribosomal proteins L11 and L1. No equivalent to secE preceding nusG, as in Escherichia coli, could be detected. The nusG gene product was overproduced in E. coli. A rabbit antiserum raised against the purified recombinant NusG reacted exclusively with one protein band of T. thermophilus crude extracts in Western blot (immunoblot) analyses, and no cross-reaction of the antiserum with E. coli NusG was observed. Recombinant NusG and the reacting T. thermophilus wild-type protein had identical sizes on sodium dodecyl sulfate-polyacrylamide gels. T. thermophilus and E. coli NusG have 45% identical and 22.5% similar amino acids, and similarities between the two proteins are most pronounced in carboxy-terminal regions. The T. thermophilus nusG gene could not rescue a nusG-deficient E. coli mutant strain.  相似文献   

18.
While several Thermus genes have been cloned and T. thermophilus has been shown to be transformable, molecular genetic studies of these thermophiles have been hampered by the absence of selectable cloning vectors. We have constructed a selectable plasmid by random insertion of a heterologous gene encoding a thermostable kanamycin nucleotidyltransferase activity into a cryptic, multicopy plasmid from T. thermophilus HB8. This plasmid should serve as a suitable starting point for the development of a gene expression system for T. thermophilus.  相似文献   

19.
Molecular genetics of Streptococcus thermophilus   总被引:4,自引:0,他引:4  
Abstract The metabolism and genetics of Streptococcus thermophilus (presently Streptococcus salivarius ssp. thermophilus ) have only been investigated recently despite its widespread use in milk fermentation processes. The development of recombinant DNA technology has allowed impressive progress to be made in the knowledge of thermophilic dairy streptococci. In particular, it has permitted a careful analysis of phenotypically altered variants which were derived from a mother strain by plasmid or chromosomal DNA reorganization. While natural phage defense mechanisms of S. thermophilus remain poorly documented, information on the bacteriophages responsible for fermentation failures has accumulated. The lysogenic state of two S. thermophilus strains has also been demonstrated for the first time. Gene transfer techniques for this species have been established and improved to the point that targeted manipulation of their chromosomal determinants is now feasible. Cloning and expression vectors have been constructed, and a few heterologous genes were successfully expressed in S. thermophilus . The first homologous genes, involved in carbohydrate utilization, have been cloned and sequenced, shedding some light on the molecular organization of key metabolic steps.  相似文献   

20.
While several Thermus genes have been cloned and T. thermophilus has been shown to be transformable, molecular genetic studies of these thermophiles have been hampered by the absence of selectable cloning vectors. We have constructed a selectable plasmid by random insertion of a heterologous gene encoding a thermostable kanamycin nucleotidyltransferase activity into a cryptic, multicopy plasmid from T. thermophilus HB8. This plasmid should serve as a suitable starting point for the development of a gene expression system for T. thermophilus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号