首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu C  Bai T  Iuliano AD  Wang M  Yang L  Wen L  Zeng Y  Li X  Chen T  Wang W  Hu Y  Yang L  Li Z  Zou S  Li D  Wang S  Feng Z  Zhang Y  Yu H  Yang W  Wang Y  Widdowson MA  Shu Y 《PloS one》2011,6(4):e17919

Background

Mainland China experienced pandemic influenza H1N1 (2009) virus (pH1N1) with peak activity during November-December 2009. To understand the geographic extent, risk factors, and attack rate of pH1N1 infection in China we conducted a nationwide serological survey to determine the prevalence of antibodies to pH1N1.

Methodology/Principal Findings

Stored serum samples (n = 2,379) collected during 2006-2008 were used to estimate baseline serum reactogenicity to pH1N1. In January 2010, we used a multistage-stratified random sampling method to select 50,111 subjects who met eligibility criteria and collected serum samples and administered a standardized questionnaire. Antibody response to pH1N1 was measured using haemagglutination inhibition (HI) assay and the weighted seroprevalence was calculated using the Taylor series linearization method. Multivariable logistic regression analyses were used to examine risk factors for pH1N1 seropositivity. Baseline seroprevalence of pH1N1 antibody (HI titer ≥40) was 1.2%. The weighted seroprevalence of pH1N1 among the Chinese population was 21.5%(vaccinated: 62.0%; unvaccinated: 17.1%). Among unvaccinated participants, those aged 6-15 years (32.9%) and 16-24 years (30.3%) had higher seroprevalence compared with participants aged 25–59 years (10.7%) and ≥60 years (9.9%, P<0.0001). Children in kindergarten and students had higher odds of seropositivity than children in family care (OR: 1.36 and 2.05, respectively). We estimated that 207.7 million individuals (15.9%) experienced pH1N1 infection in China.

Conclusions/Significance

The Chinese population had low pre-existing immunity to pH1N1 and experienced a relatively high attack rate in 2009 of this virus. We recommend routine control measures such as vaccination to reduce transmission and spread of seasonal and pandemic influenza viruses.  相似文献   

2.
In 2013, three reassortant swine influenza viruses (SIVs)—two H1N2 and one H3N2—were isolated from symptomatic pigs in Japan; each contained genes from the pandemic A(H1N1) 2009 virus and endemic SIVs. Phylogenetic analysis revealed that the two H1N2 viruses, A/swine/Gunma/1/2013 and A/swine/Ibaraki/1/2013, were reassortants that contain genes from the following three distinct lineages: (i) H1 and nucleoprotein (NP) genes derived from a classical swine H1 HA lineage uniquely circulating among Japanese SIVs; (ii) neuraminidase (NA) genes from human‐like H1N2 swine viruses; and (iii) other genes from pandemic A(H1N1) 2009 viruses. The H3N2 virus, A/swine/Miyazaki/2/2013, comprised genes from two sources: (i) hemagglutinin (HA) and NA genes derived from human and human‐like H3N2 swine viruses and (ii) other genes from pandemic A(H1N1) 2009 viruses. Phylogenetic analysis also indicated that each of the reassortants may have arisen independently in Japanese pigs. A/swine/Miyazaki/2/2013 were found to have strong antigenic reactivities with antisera generated for some seasonal human‐lineage viruses isolated during or before 2003, whereas A/swine/Miyazaki/2/2013 reactivities with antisera against viruses isolated after 2004 were clearly weaker. In addition, antisera against some strains of seasonal human‐lineage H1 viruses did not react with either A/swine/Gunma/1/2013 or A/swine/Ibaraki/1/2013. These findings indicate that emergence and spread of these reassortant SIVs is a potential public health risk.  相似文献   

3.

Background

Based on our clinical experience, the H-reflex amplitude asymmetry might be an earlier sign of nerve root involvement than latency in patients with S1 radiculopathy. However, no data to support this assumption are available. The purpose of this study was to review and report the electrophysiological changes in H-reflex amplitude and latency in patients with radiculopathy in order to determine if there is any evidence to support the assumption that H-reflex amplitude is an earlier sign of nerve root involvement than latency.

Results

Patients with radiculopathy showed significant amplitude asymmetry when compared with healthy controls. However, latency was not always significantly different between patients and healthy controls. These findings suggest nerve root axonal compromise that reduced reflex amplitude earlier than the latency parameter (demyelination) during the pathologic processes.

Conclusion

Contrary to current clinical thought, H-reflex amplitude asymmetry is an earlier sign/parameter of nerve root involvement in patients with radiculopathy compared with latency.  相似文献   

4.

Background

Google Flu Trends (GFT) uses anonymized, aggregated internet search activity to provide near-real time estimates of influenza activity. GFT estimates have shown a strong correlation with official influenza surveillance data. The 2009 influenza virus A (H1N1) pandemic [pH1N1] provided the first opportunity to evaluate GFT during a non-seasonal influenza outbreak. In September 2009, an updated United States GFT model was developed using data from the beginning of pH1N1.

Methodology/Principal Findings

We evaluated the accuracy of each U.S. GFT model by comparing weekly estimates of ILI (influenza-like illness) activity with the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). For each GFT model we calculated the correlation and RMSE (root mean square error) between model estimates and ILINet for four time periods: pre-H1N1, Summer H1N1, Winter H1N1, and H1N1 overall (Mar 2009–Dec 2009). We also compared the number of queries, query volume, and types of queries (e.g., influenza symptoms, influenza complications) in each model. Both models'' estimates were highly correlated with ILINet pre-H1N1 and over the entire surveillance period, although the original model underestimated the magnitude of ILI activity during pH1N1. The updated model was more correlated with ILINet than the original model during Summer H1N1 (r = 0.95 and 0.29, respectively). The updated model included more search query terms than the original model, with more queries directly related to influenza infection, whereas the original model contained more queries related to influenza complications.

Conclusions

Internet search behavior changed during pH1N1, particularly in the categories “influenza complications” and “term for influenza.” The complications associated with pH1N1, the fact that pH1N1 began in the summer rather than winter, and changes in health-seeking behavior each may have played a part. Both GFT models performed well prior to and during pH1N1, although the updated model performed better during pH1N1, especially during the summer months.  相似文献   

5.
Although metagenomics has been previously employed for pathogen discovery, its cost and complexity have prevented its use as a practical front-line diagnostic for unknown infectious diseases. Here we demonstrate the utility of two metagenomics-based strategies, a pan-viral microarray (Virochip) and deep sequencing, for the identification and characterization of 2009 pandemic H1N1 influenza A virus. Using nasopharyngeal swabs collected during the earliest stages of the pandemic in Mexico, Canada, and the United States (n = 17), the Virochip was able to detect a novel virus most closely related to swine influenza viruses without a priori information. Deep sequencing yielded reads corresponding to 2009 H1N1 influenza in each sample (percentage of aligned sequences corresponding to 2009 H1N1 ranging from 0.0011% to 10.9%), with up to 97% coverage of the influenza genome in one sample. Detection of 2009 H1N1 by deep sequencing was possible even at titers near the limits of detection for specific RT-PCR, and the percentage of sequence reads was linearly correlated with virus titer. Deep sequencing also provided insights into the upper respiratory microbiota and host gene expression in response to 2009 H1N1 infection. An unbiased analysis combining sequence data from all 17 outbreak samples revealed that 90% of the 2009 H1N1 genome could be assembled de novo without the use of any reference sequence, including assembly of several near full-length genomic segments. These results indicate that a streamlined metagenomics detection strategy can potentially replace the multiple conventional diagnostic tests required to investigate an outbreak of a novel pathogen, and provide a blueprint for comprehensive diagnosis of unexplained acute illnesses or outbreaks in clinical and public health settings.  相似文献   

6.

Background

In the context of 2009 pandemic influenza (H1N1) virus infection (pandemic H1N1 influenza), identifying correlates of the severity of disease is critical to guiding the implementation of antiviral strategies, prioritization of vaccination efforts and planning of health infrastructure. The objective of this study was to identify factors correlated with severity of disease in confirmed cases of pandemic H1N1 influenza.

Methods

This cumulative case–control study included all laboratory-confirmed cases of pandemic H1N1 influenza among residents of the province of Manitoba, Canada, for whom the final location of treatment was known. Severe cases were defined by admission to a provincial intensive care unit (ICU). Factors associated with severe disease necessitating admission to the ICU were determined by comparing ICU cases with two control groups: patients who were admitted to hospital but not to an ICU and those who remained in the community.

Results

As of Sept. 5, 2009, there had been 795 confirmed cases of pandemic H1N1 influenza in Manitoba for which the final treatment location could be determined. The mean age of individuals with laboratory-confirmed infection was 25.3 (standard deviation 18.8) years. More than half of the patients (417 or 52%) were female, and 215 (37%) of 588 confirmed infections for which ethnicity was known occurred in First Nations residents. The proportion of First Nations residents increased with increasing severity of disease (116 [28%] of 410 community cases, 74 [54%] of 136 admitted to hospital and 25 [60%] of 42 admitted to an ICU; p < 0.001), as did the presence of an underlying comorbidity (201 [35%] of 569 community cases, 103 [57%] of 181 admitted to hospital and 34 [76%] of 45 admitted to an ICU; p < 0.001). The median interval from onset of symptoms to initiation of antiviral therapy was 2 days (interquartile range, IQR 1–3) for community cases, 4 days (IQR 2–6) for patients admitted to hospital and 6 days (IQR 4–9) for those admitted to an ICU (p < 0.001). In a multivariable logistic model, the interval from onset of symptoms to initiation of antiviral therapy (odds ratio [OR] 8.24, 95% confidence interval [CI] 2.82–24.1), First Nations ethnicity (OR 6.52, 95% CI 2.04–20.8) and presence of an underlying comorbidity (OR 3.19, 95% CI 1.07–9.52) were associated with increased odds of admission to the ICU (i.e., severe disease) relative to community cases. In an analysis of ICU cases compared with patients admitted to hospital, First Nations ethnicity (OR 3.23, 95% CI 1.04–10.1) was associated with increased severity of disease.

Interpretation

Severe pandemic H1N1 influenza necessitating admission to the ICU was associated with a longer interval from onset of symptoms to treatment with antiviral therapy and with the presence of an underlying comorbidity. First Nations ethnicity appeared to be an independent determinant of severe infection. Despite these associations, the cause and outcomes of pandemic HINI influenza may involve many complex and interrelated factors, all of which require further research and analysis.In April 2009, Canada’s first wave of pandemic influenza (H1N1) virus infections (pandemic H1N1 influenza) began. The highest burden of severe illness in Canada occurred in the province of Manitoba, where 45 Manitobans and 9 out-of-province patients were admitted to an intensive care unit (ICU). In this first wave, ICU staff and equipment were mobilized to expand bed capacity and ventilator capabilities to accommodate clinical need.Although many individuals presented with mild, self-limited symptoms and no sign of pulmonary involvement, some people required admission to an ICU and received maximal life support measures.13 Predicting disease and mitigating hazard in at-risk populations is an important aim of public heath epidemiology, and in preparation for future waves of pandemic H1N1 influenza, determining correlates of the severity of disease may be very important. Initial reports have suggested that, in addition to many of the previously known risk factors for complications of seasonal influenza, obesity4 and other underlying comorbidities3,5 may be risk factors for severe disease. The interval from onset of symptoms to initiation of antiviral therapy or other treatment and supportive care was also associated with adverse outcome in a recent case series.6 In a Canadian study of severe pandemic H1N1 influenza, First Nations people were proportionally overrepresented among patients in the ICU.2 However, it is unclear if this association was independent of potential confounding factors. The ability to determine correlates of severe pandemic H1N1 disease and subsequent need for ICU resources in at-risk populations would provide opportunities for public and population health analysis and action, public education, strategic prioritization of vaccination efforts, efficient and equitable allocation and use of antiviral drugs, and development of infrastructure within the health system.The objectives of this study were to identify factors that were correlated with severity of disease in confirmed cases of pandemic H1N1 influenza. Our hypothesis, which was based on existing literature, was that obesity, First Nations ethnicity and longer interval from onset of symptoms to treatment would be important determinants of the severity of disease.  相似文献   

7.

Background

In Finland, the first infections caused by the 2009 pandemic influenza A(H1N1) virus were identified on May 10. During the next three months almost all infections were found from patients who had recently traveled abroad. In September 2009 the pandemic virus started to spread in the general population, leading to localized outbreaks and peak epidemic activity was reached during weeks 43–48.

Methods/Results

The nucleotide sequences of the hemagglutinin (HA) and neuraminidase (NA) genes from viruses collected from 138 patients were determined. The analyzed viruses represented mild and severe infections and different geographic regions and time periods. Based on HA and NA gene sequences, the Finnish pandemic viruses clustered in four groups. Finnish epidemic viruses and A/California/07/2009 vaccine virus strain varied from 2–8 and 0–5 amino acids in HA and NA molecules, respectively, giving a respective maximal evolution speed of 1.4% and 1.1%. Most amino acid changes in HA and NA molecules accumulated on the surface of the molecule and were partly located in antigenic sites. Three severe infections were detected with a mutation at HA residue 222, in two viruses with a change D222G, and in one virus D222Y. Also viruses with change D222E were identified. All Finnish pandemic viruses were sensitive to oseltamivir having the amino acid histidine at residue 275 of the neuraminidase molecule.

Conclusions

The Finnish pandemic viruses were quite closely related to A/California/07/2009 vaccine virus. Neither in the HA nor in the NA were changes identified that may lead to the selection of a virus with increased epidemic potential or exceptionally high virulence. Continued laboratory-based surveillance of the 2009 pandemic influenza A(H1N1) is important in order to rapidly identify drug resistant viruses and/or virus variants with potential ability to cause severe forms of infection and an ability to circumvent vaccine-induced immunity.  相似文献   

8.

Background

Pandemic influenza A(H1N1) (pH1N1) was first identified in North America in April 2009. Vaccination against pH1N1 commenced in the U.S. in October 2009 and continued through January 2010. The objective of this study was to evaluate the cost-effectiveness of pH1N1 vaccination.

Methodology

A computer simulation model was developed to predict costs and health outcomes for a pH1N1 vaccination program using inactivated vaccine compared to no vaccination. Probabilities, costs and quality-of-life weights were derived from emerging primary data on pH1N1 infections in the US, published and unpublished data for seasonal and pH1N1 illnesses, supplemented by expert opinion. The modeled target population included hypothetical cohorts of persons aged 6 months and older stratified by age and risk. The analysis used a one-year time horizon for most endpoints but also includes longer-term costs and consequences of long-term sequelae deaths. A societal perspective was used. Indirect effects (i.e., herd effects) were not included in the primary analysis. The main endpoint was the incremental cost-effectiveness ratio in dollars per quality-adjusted life year (QALY) gained. Sensitivity analyses were conducted.

Results

For vaccination initiated prior to the outbreak, pH1N1 vaccination was cost-saving for persons 6 months to 64 years under many assumptions. For those without high risk conditions, incremental cost-effectiveness ratios ranged from $8,000–$52,000/QALY depending on age and risk status. Results were sensitive to the number of vaccine doses needed, costs of vaccination, illness rates, and timing of vaccine delivery.

Conclusions

Vaccination for pH1N1 for children and working-age adults is cost-effective compared to other preventive health interventions under a wide range of scenarios. The economic evidence was consistent with target recommendations that were in place for pH1N1 vaccination. We also found that the delays in vaccine availability had a substantial impact on the cost-effectiveness of vaccination.  相似文献   

9.
The emergence of the influenza (H1N1) 2009 virus provided a unique opportunity to study the evolution of a pandemic virus following its introduction into the human population. Virological and clinical surveillance in the UK were comprehensive during the first and second waves of the pandemic in 2009, with extensive laboratory confirmation of infection allowing a detailed sampling of representative circulating viruses. We sequenced the complete coding region of the haemagglutinin (HA) segment of 685 H1N1 pandemic viruses selected without bias during two waves of pandemic in the UK (April-December 2009). Phylogenetic analysis showed that although temporal accumulation of amino acid changes was observed in the HA sequences, the overall diversity was less than that typically seen for seasonal influenza A H1N1 or H3N2. There was co-circulation of multiple variants as characterised by signature amino acid changes in the HA. A specific substitution (S203T) became predominant both in UK and global isolates. No antigenic drift occurred during 2009 as viruses with greater than four-fold reduction in their haemagglutination inhibition (HI) titre ("low reactors") were detected in a low proportion (3%) and occurred sporadically. Although some limited antigenic divergence in viruses with four-fold reduction in HI titre might be related to the presence of 203T, additional studies are needed to test this hypothesis.  相似文献   

10.
The 2009 H1N1 pandemic influenza virus represents the greatest incidence of human infection with an influenza virus of swine origin to date. Moreover, triple-reassortant swine (TRS) H1N1 viruses, which share similar host and lineage origins with 2009 H1N1 viruses, have been responsible for sporadic human cases since 2005. Similar to 2009 H1N1 viruses, TRS viruses are capable of causing severe disease in previously healthy individuals and frequently manifest with gastrointestinal symptoms; however, their ability to cause severe disease has not been extensively studied. Here, we evaluated the pathogenicity and transmissibility of two TRS viruses associated with disease in humans in the ferret model. TRS and 2009 H1N1 viruses exhibited comparable viral titers and histopathologies following virus infection and were similarly unable to transmit efficiently via respiratory droplets in the ferret model. Utilizing TRS and 2009 H1N1 viruses, we conducted extensive hematologic and blood serum analyses on infected ferrets to identify lymphohematopoietic parameters associated with mild to severe influenza virus infection. Following H1N1 or H5N1 influenza virus infection, ferrets were found to recapitulate several laboratory abnormalities previously documented with human disease, furthering the utility of the ferret model for the assessment of influenza virus pathogenicity.  相似文献   

11.

Background

While children and young adults had the highest attack rates due to 2009 pandemic (H1N1) influenza A (2009 H1N1), studies of hospitalized cases noted high fatality in older adults. We analyzed California public health surveillance data to better characterize the populations at risk for dying due to 2009 H1N1.

Methods and Findings

A case was an adult ≥20 years who died with influenza-like symptoms and laboratory results indicative of 2009 H1N1. Demographic and clinical data were abstracted from medical records using a standardized case report form. From April 3, 2009 – August 10, 2010, 541 fatal cases ≥20 years with 2009 H1N1 were reported. Influenza fatality rates per 100,000 population were highest in persons 50–59 years (3.5; annualized rate = 2.6) and 60–69 years (2.3; annualized rate = 1.7) compared to younger and older age groups (0.4–1.9; annualized rates = 0.3–1.4). Of 486 cases hospitalized prior to death, 441 (91%) required intensive care unit (ICU) admission. ICU admission rates per 100,000 population were highest in adults 50–59 years (8.6). ICU case-fatality ratios among adults ranged from 24–42%, with the highest ratios in persons 70–79 years. A total of 425 (80%) cases had co-morbid conditions associated with severe seasonal influenza. The prevalence of most co-morbid conditions increased with increasing age, but obesity, pregnancy and obstructive sleep apnea decreased with age. Rapid testing was positive in 97 (35%) of 276 tested. Of 482 cases with available data, 384 (80%) received antiviral treatment, including 49 (15%) of 328 within 48 hours of symptom onset.

Conclusions

Adults aged 50–59 years had the highest fatality due to 2009 H1N1; older adults may have been spared due to pre-existing immunity. However, once infected and hospitalized in intensive care, case-fatality ratios were high for all adults, especially in those over 60 years. Vaccination of adults older than 50 years should be encouraged.  相似文献   

12.
Influenza A neuraminidase (NA) is a target for anti-influenza drugs. The function of this enzyme is to cleave a glycosidic linkage of a host cell receptor that links sialic acid (Sia) to galactose (Gal), to allow the virus to leave an infected cell and propagate. The receptor is an oligosaccharide on the host cell surface. There are two types of oligosaccharide receptor; the first, which is found mainly on avian epithelial cell surfaces, links Sia with Gal by an α2,3 glycosidic linkage; in the second, found mainly on human epithelial cell surfaces, linkage is via an α2,6 linkage. Some researchers believe that NAs from different viruses show selectivity for each type of linkage, but there is limited information available to confirm this hypothesis. To see if the linkage type is more specific to any particular NA, a number of NA-receptor complexes of human influenza A H1N1 (1918), avian influenza A H5N1 (2004), and a pandemic strain of H1N1 (2009) were constructed using homology modeling and molecular dynamics simulation. The results show that the two types of receptor analogues bound to NAs use different mechanisms. Moreover, it was found that a residue unique to avian virus NA is responsible for the recognition of the Siaα2,3Gal receptor, and a residue unique to human virus NA is responsible for the recognition of Siaα2,6Gal. We believe that this finding could explain how NAs of different virus origins always possess some unique residues.  相似文献   

13.
14.
A recently emerged novel influenza A (H1N1) virus continues to spread globally. The pandemic caused by this new H1N1 swine influenza virus presents an opportunity to analyze the evolutionary significance of the origin of the new strain of swine flu. Our study clearly suggests that strong purifying selection is responsible for the evolution of the novel influenza A (H1N1) virus among human. We observed that the 2009 viral sequences are evolutionarily widely different from the past few years’ sequences. Rather, the 2009 sequences are evolutionarily more similar to the most ancient sequence reported in the NCBI Influenza Virus Resource Database collected in 1918. Analysis of evolutionary rates also supports the view that all the genes in the pandemic strain of 2009 except NA and M genes are derived from triple reassorted swine viruses. Our study demonstrates the importance of using complete-genome approach as more sequences will become available to investigate the evolutionary origin of the 1918 influenza A (H1N1) swine flu strain and the possibility of future reassortment events.  相似文献   

15.

Background

In 2009, a novel influenza virus (2009 pandemic influenza A (H1N1) virus (pH1N1)) caused significant disease in the United States. Most states, including Florida, experienced a large fall wave of disease from September through November, after which disease activity decreased substantially. We determined the prevalence of antibodies due to the pH1N1 virus in Florida after influenza activity had peaked and estimated the proportion of the population infected with pH1N1 virus during the pandemic.

Methods

During November-December 2009, we collected leftover serum from a blood bank, a pediatric children''s hospital and a pediatric outpatient clinic in Tampa Bay Florida. Serum was tested for pH1N1 virus antibodies using the hemagglutination-inhibition (HI) assay. HI titers ≥40 were considered seropositive. We adjusted seroprevalence results to account for previously established HI assay specificity and sensitivity and employed a simple statistical model to estimate the proportion of seropositivity due to pH1N1 virus infection and vaccination.

Results

During the study time period, the overall seroprevalence in Tampa Bay, Florida was 25%, increasing to 30% after adjusting for HI assay sensitivity and specificity. We estimated that 5.9% of the population had vaccine-induced seropositivity while 25% had seropositivity secondary to pH1N1 virus infection. The highest cumulative incidence of pH1N1 virus infection was among children aged 5–17 years (53%) and young adults aged 18–24 years (47%), while adults aged ≥50 years had the lowest cumulative incidence (11–13%) of pH1N1 virus infection.

Conclusions

After the peak of the fall wave of the pandemic, an estimated one quarter of the Tampa Bay population had been infected with the pH1N1 virus. Consistent with epidemiologic trends observed during the pandemic, the highest burdens of disease were among school-aged children and young adults.  相似文献   

16.

Introduction

Several aspects of the epidemiology of 2009 (H1N1) pandemic influenza have not been accurately determined. We sought to study whether the age distribution of cases differs in comparison with seasonal influenza.

Methods

We searched for official, publicly available data through the internet from different countries worldwide on the age distribution of cases of influenza during the 2009 (H1N1) pandemic influenza period and most recent seasonal influenza periods. Data had to be recorded through the same surveillance system for both compared periods.

Results

For 2009 pandemic influenza versus recent influenza seasons, in USA, visits for influenza-like illness to sentinel providers were more likely to involve the age groups of 5–24, 25–64 and 0–4 years compared with the reference group of >64 years [odds ratio (OR) (95% confidence interval (CI)): 2.43 (2.39–2.47), 1.66 (1.64–1.69), and 1.51 (1.48–1.54), respectively]. Pediatric deaths were less likely in the age groups of 2–4 and <2 years than the reference group of 5–17 years [OR (95% CI): 0.46 (0.25–0.85) and 0.49 (0.30–0.81), respectively]. In Australia, notifications for laboratory-confirmed influenza were more likely in the age groups of 10–19, 5–9, 20–44, 45–64 and 0–4 years than the reference group of >65 years [OR (95% CI): 7.19 (6.67–7.75), 5.33 (4.90–5.79), 5.04 (4.70–5.41), 3.12 (2.89–3.36) and 1.89 (1.75–2.05), respectively]. In New Zealand, consultations for influenza-like illness by sentinel providers were more likely in the age groups of <1, 1–4, 35–49, 5–19, 20–34 and 50–64 years than the reference group of >65 years [OR (95% CI): 2.38 (1.74–3.26), 1.99 (1.62–2.45), 1.57 (1.30–1.89), 1.57 (1.30–1.88), 1.40 (1.17–1.69) and 1.39 (1.14–1.70), respectively].

Conclusions

The greatest increase in influenza cases during 2009 (H1N1) pandemic influenza period, in comparison with most recent seasonal influenza periods, was seen for school-aged children, adolescents, and younger adults.  相似文献   

17.

Background

Hospitalization and lab confirmed cases of H1N1 have been reported during the first wave of the 2009 pandemic but these are not accurate measures of influenza incidence in the population. We estimated the cumulative incidence of pandemic (H1N1) influenza among pregnant women in the province of Manitoba during the first wave of the 2009 pandemic.

Methods

Two panels of stored frozen serum specimens collected for routine prenatal screening were randomly selected for testing before (March 2009, n = 252) and after (August 2009, n = 296) the first wave of the pandemic. A standard hemagglutination inhibition assay was used to detect the presence of IgG antibodies against the pandemic (H1N1) 2009 virus. The cumulative incidence of pandemic (H1N1) influenza was calculated as the difference between the point prevalence rates in the first and second panels.

Results

Of the specimens collected in March, 7.1% were positive for the IgG antibodies (serum antibody titre ≥ 1:40). The corresponding prevalence was 15.7% among the specimens collected in August. The difference indicated a cumulative incidence of 8.6% (95% confidence interval [CI] 3.2%–13.7%). The rate differed geographically, the highest being in the northern regions (20.8%, 95% CI 7.9%–31.8%), as compared with 4.0% (95% CI 0.0%–11.9%) in Winnipeg and 8.9% (95% CI 0.0%–18.8%) in the rest of the province.

Interpretation

We estimated that the cumulative incidence of pandemic (H1N1) influenza among pregnant women in Manitoba during the first wave of the 2009 pandemic was 8.6%. It was 20.8% in the northern regions of the province.During the first wave of the pandemic (H1N1) 2009, the province of Manitoba was more severely affected than almost any other Canadian province.1 Pregnant women in particular had higher rates of laboratory-confirmed infection and of severe illness.2 However, the number of laboratory-confirmed cases is not an accurate measure of the incidence of influenza in the population. The number and geographic distribution of confirmed cases are influenced by differences in access to medical care, physicians’ practices and other factors.3We estimated the cumulative incidence of pandemic (H1N1) influenza among pregnant women in the province of Manitoba during the first wave of the 2009 pandemic. We did this by measuring the point seroprevalence in random samples of pregnant women presenting for routine prenatal screening before and after the first wave.  相似文献   

18.
Enantiomerically pure cyclopentyl cytosine [(?)-carbodine 1] was synthesized from d-ribose and evaluated for its anti-influenza activity in vitro in comparison to the (+)-carbodine, (±)-carbodine and ribavirin. (?)-Carbodine 1 exhibited potent antiviral activity against various strains of influenza A and B viruses.  相似文献   

19.

Background

This study is to determine the seroprevalence of the pandemic influenza A H1N1 virus (pH1N1) in Taiwan before and after the 2009 pandemic, and to estimate the relative severity of pH1N1 infections among different age groups.

Methodology/Principal Findings

A total of 1544 and 1558 random serum samples were collected from the general population in Taiwan in 2007 and 2010, respectively. Seropositivity was defined by a hemagglutination inhibition titer to pH1N1 (A/Taiwan/126/09) ≥1:40. The seropositivity rate of pH1N1 among the unvaccinated subjects and national surveillance data were used to compare the proportion of infections that led to severe diseases and fatalities among different age groups. The overall seroprevalence of pH1N1 was 0.91% (95% confidence interval [CI] 0.43–1.38) in 2007 and significantly increased to 29.9% (95% CI 27.6–32.2) in 2010 (p<0.0001), with the peak attack rate (55.4%) in 10–17 year-old adolescents, the lowest in elderly ≥65 years (14.1%). The overall attack rates were 20.6% (188/912) in unvaccinated subjects. Among the unvaccinated but infected populations, the estimated attack rates of severe cases per 100,000 infections were significantly higher in children aged 0–5 years (54.9 cases, odds ratio [OR] 4.23, 95% CI 3.04–5.90) and elderly ≥ 65years (22.4 cases, OR 2.76, 95% CI 1.99–3.83) compared to adolescents aged 10–17 years (13.0 cases). The overall case-fatality rate was 0.98 per 100,000 infections without a significant difference in different age groups.

Conclusions/Significance

Pre-existing immunity against pH1N1 was rarely identified in Taiwanese at any age in 2007. Young children and elderly – the two most lower seroprotection groups showed the greatest vulnerability to clinical severity after the pH1N1 infections. These results imply that both age groups should have higher priority for immunization in the coming flu season.  相似文献   

20.

Background

Although the 2009 (H1N1) influenza pandemic officially ended in August 2010, the virus will probably circulate in future years. Several types of H1N1 vaccines have been tested including various dosages and adjuvants, and meta-analysis is needed to identify the best formulation.

Methods

We searched MEDLINE, EMBASE, and nine clinical trial registries to April 2011, in any language for randomized clinical trials (RCTs) on healthy children, adolescents, adults and the elderly. Primary outcome was the seroconversion rate according to hemagglutinination-inhibition (HI); secondary outcomes were adverse events. For the primary outcome, we used head-to-head meta-analysis and multiple-treatments meta-analysis.

Results

Eighteen RCTs could be included in all primary analyses, for a total of 76 arms (16,725 subjects). After 2 doses, all 2009 H1N1 split/subunit inactivated vaccines were highly immunogenic and overcome CPMP seroconversion criteria. After 1 dose only, all split/subunit vaccines induced a satisfactory immunogenicity (> = 70%) in adults and adolescents, while only some formulations showed acceptable results for children and elderly (non-adjuvanted at high-doses and oil-in-water adjuvanted vaccines). Vaccines with oil-in-water adjuvants were more immunogenic than both nonadjuvanted and aluminum-adjuvanted vaccines at equal doses and their immunogenicity at doses < = 6 µg (even with as little as 1.875 µg of hemagglutinin antigen) was not significantly lower than that achieved after higher doses. Finally, the rate of serious vaccine-related adverse events was low for all 2009 H1N1 vaccines (3 cases, resolved in 10 days, out of 22826 vaccinated subjects). However, mild to moderate adverse reactions were more (and very) frequent for oil-in-water adjuvanted vaccines.

Conclusions

Several one-dose formulations might be valid for future vaccines, but 2 doses may be needed for children, especially if a low-dose non-adjuvanted vaccine is used. Given that 15 RCTs were sponsored by vaccine manufacturers, future trials sponsored by non-industry agencies and comparing vaccines using different types of adjuvants are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号