首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The selection of fossil data to use as calibration age priors in molecular divergence time estimates inherently links neontological methods with paleontological theory. However, few neontological studies have taken into account the possibility of a taphonomic bias in the fossil record when developing approaches to fossil calibration selection. The Sppil-Rongis effect may bias the first appearance of a lineage toward the recent causing most objective calibration selection approaches to erroneously exclude appropriate calibrations or to incorporate multiple calibrations that are too young to accurately represent the divergence times of target lineages. Using turtles as a case study, we develop a Bayesian extension to the fossil selection approach developed by Marshall (2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibrations points. Am. Nat. 171:726-742) that takes into account this taphonomic bias. Our method has the advantage of identifying calibrations that may bias age estimates to be too recent while incorporating uncertainty in phylogenetic parameter estimates such as tree topology and branch lengths. Additionally, this method is easily adapted to assess the consistency of potential calibrations to any one calibration in the candidate pool.  相似文献   

2.
During photosynthesis, CO2 moves from the atmosphere (C(a)) surrounding the leaf to the sub-stomatal internal cavities (C(i)) through stomata, and from there to the site of carboxylation inside the chloroplast stroma (C(c)) through the leaf mesophyll. The latter CO2 diffusion component is called mesophyll conductance (g(m)), and can be divided in at least three components, that is, conductance through intercellular air spaces (g(ias)), through cell wall (g(w)) and through the liquid phase inside cells (g(liq)). A large body of evidence has accumulated in the past two decades indicating that g(m) is sufficiently small as to significantly decrease C(c) relative to C(i), therefore limiting photosynthesis. Moreover, g(m) is not constant, and it changes among species and in response to environmental factors. In addition, there is now evidence that g(liq) and, in some cases, g(w), are the main determinants of g(m). Mesophyll conductance is very dynamic, changing in response to environmental variables as rapid or even faster than stomatal conductance (i.e. within seconds to minutes). A revision of current knowledge on g(m) is presented. Firstly, a historical perspective is given, highlighting the founding works and methods, followed by a re-examination of the range of variation of g(m) among plant species and functional groups, and a revision of the responses of g(m) to different external (biotic and abiotic) and internal (developmental, structural and metabolic) factors. The possible physiological bases for g(m), including aquaporins and carbonic anhydrases, are discussed. Possible ecological implications for variable g(m) are indicated, and the errors induced by neglecting g(m) when interpreting photosynthesis and carbon isotope discrimination models are highlighted. Finally, a series of research priorities for the near future are proposed.  相似文献   

3.
Mesophyll conductance to CO2 in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
The close rosette growth form, short petioles and small leaves of Arabidopsis thaliana make measurements with commercial gas exchange cuvettes difficult. This difficulty can be overcome by growing A. thaliana plants in 'ice-cream cone-like' soil pots. This design permitted simultaneous gas exchange and chlorophyll fluorescence measurements from which the first estimates of mesophyll conductance to CO(2) (g(m)) in Arabidopsis were obtained and used to determine photosynthetic limitations during plant ageing from c. 30-45 d. Estimations of g(m) showed maximum values of 0.2 mol CO(2) m(-2) s(-1) bar(-1), lower than expected for a thin-leaved annual species. The parameterization of the response of net photosynthesis (A(N)) to chloroplast CO(2) concentrations (C(c)) yielded estimations of the maximum velocity of carboxylation (V(c,max_Cc)) which were also lower than those reported for other annual species. As A. thaliana plants aged from 30 to 45 d, there was a 40% decline of A(N) that was entirely the result of increased diffusional limitations to CO(2) transfer, with g(m) being the largest. The results suggest that in A. thaliana A(N) is limited by low g(m) and low capacity for carboxylation. Decreased g(m) is the main factor involved in early age-induced photosynthetic decline.  相似文献   

4.
脱落酸对低温下雷公藤幼苗光合作用及叶绿素荧光的影响   总被引:3,自引:1,他引:3  
以1年生雷公藤扦插苗为试材,研究低温胁迫下不同浓度外源脱落酸(ABA,0、5、10、15、20、25 mg·L-1)叶面喷施处理对雷公藤叶片光合作用及叶绿素荧光参数的影响.结果表明:喷施20 mg·L-1的ABA能显著提高雷公藤幼苗的抗冷性,减缓低温下雷公藤叶片净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(gs)、胞间CO2浓度(Ci)的下降幅度,提高幼苗叶片的光合能力.低温处理6 d后,随着ABA浓度上升,雷公藤叶片的初始荧光(Fo)下降,最大荧光(Fm)和PSII最大光化学效率(Fv/Fm)上升,PSII实际光化学量子产量(ΦPS)、光化学猝灭系数(qP)先下降后上升,而非光化学猝灭系数(qN)呈下降-上升-下降趋势.Pn、gs、qP、Fm和Fv/Fm均在20 mg·L-1ABA处理时达到峰值.不同浓度ABA的相对电子传递速率(rETR)随着光化光强度增加呈先上升后下降的趋势,当光化光强度(PAR)达到395 μmol·m-2s-1时,各处理的rETR达到最高值,其中25 mg·L-1和20 mg·L-1ABA处理分别比对照高17.1%和5.2%.雷公藤叶片ΦPSⅡ的光响应曲线均随光化光强度升高而下降,qN的光响应曲线则呈相反趋势.  相似文献   

5.
Hao XY  Han X  Li P  Yang HB  Lin ED 《应用生态学报》2011,22(10):2776-2780
利用FACE系统在大田条件下通过盆栽试验研究了大气CO2浓度升高[CO2浓度平均为(550+60) μmol·mo1-1]对绿豆叶片光合生理和叶绿素荧光参数的影响.结果表明:与对照[ CO2浓度平均为(389+40) μmol·mol-1左右]相比,大气CO2浓度升高使花荚期绿豆叶片净光合速率(Pn)和胞间CO2浓度(Ci)分别升高11.7%和9.8%,气孔导度(Gs)和蒸腾速率(Tr)分别下降32.0%和24.6%,水分利用效率(WUE)提高83.5%;在蕾期,CO2浓度升高对绿豆叶片叶绿素初始荧光(Fo)、最大荧光(Fm)、可变荧光(Fv)、Fv/Fm和Fv/Fo没有显著影响;在鼓粒期,CO2浓度升高使绿豆叶片Fo增加19.1%,Fm和Fv分别下降9.0%和14.3%,Fv/Fo和Fv/Fm分别下降25.8%和6.2%.表明大气CO2浓度升高可能使绿豆生长后期光系统Ⅱ反应中心结构受到破坏,叶片的光合能力下降.  相似文献   

6.
Quantifying species relative abundances in plant communities remains a key issue for the assessment of community functional structure. This is particularly challenging when non-destructive estimates are required over time. We tested whether the point intercept method (PIM), originally developed for low-diverse communities, is relevant for assessing the aboveground biomass and functional structure of highly diverse, low-productive Mediterranean grasslands. We sampled 18 communities with the PIM along a gradient of soil depth and texture, twice over the growing season. After each sampling period, we harvested the aboveground biomass in order to measure species biomass and to assess species richness and community functional structure with plant height, leaf area and leaf dry matter content (LDMC). We investigated the relationship between point intercept measurements and aboveground biomass at three hierarchical levels (species, growth-form and community) to find generalizable calibration equations for estimating community biomass and tested for sensitivity of estimates to community structure. We then compared the community weighted mean (CWM) and variance (CWV) of LDMC, calculated with and without calibration. Differences in species growth strategy and phenology strongly impacted biomass estimates at both the species and the community level. These differences were, however, successfully accounted for by growth-form specific calibrations, which provided accurate estimates without any influence of community structure. Lack of calibration may have dramatic consequences on functional structure assessment by inducing errors in estimates of CWV up to 80 %, depending on growth-form proportions. This work contributes to a better understanding of the possible methodological biases induced during sampling with the PIM, when quantifying species relative abundances for functional structure assessment in complex communities.  相似文献   

7.
Carbon and oxygen isotope discrimination of CO(2) during photosynthesis (Δ(13)C(obs) and Δ(18)O(obs)) were measured along a monocot leaf, triticale (Triticum × Secale). Both Δ(13)C(obs) and Δ(18)O(obs) increased towards the leaf tip. While this was expected for Δ(18)O(obs) , because of progressive enrichment of leaf water associated with the Péclet effect, the result was surprising for Δ(13) C(obs). To explore parameters determining this pattern, we measured activities of key photosynthetic enzymes [ribulose bis-phosphate carboxylase-oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPC) and carbonic anhydrase) as well as maximum carboxylation and electron transport rates (V(cmax) and J(max)) along the leaf. Patterns in leaf internal anatomy along the leaf were also quantified. Mesophyll conductance (g(m)) is known to have a strong influence on Δ(13)C(obs) , so we used three commonly used estimation methods to quantify variation in g(m) along the leaf. Variation in Δ(13)C(obs) was correlated with g(m) and chloroplast surface area facing the intercellular air space, but unrelated to photosynthetic enzyme activity. The observed variation could cause errors at higher scales if the appropriate portion of a leaf is not chosen for leaf-level measurements and model parameterization. Our study shows that one-third of the way from the base of the leaf represents the most appropriate portion to enclose in the leaf chamber.  相似文献   

8.
9.
A limiting factor in many molecular dating studies is shortage of reliable calibrations. Current methods for choosing calibrations (e.g. cross-validation) treat them as either correct or incorrect, whereas calibrations probably lie on a continuum from highly accurate to very poor. Bayesian relaxed clock analysis permits inclusion of numerous candidate calibrations as priors: provided most calibrations are reliable, the model appropriate and the data informative, the accuracy of each calibration prior can be evaluated. If a calibration is accurate, then the analysis will support the prior so that the posterior estimate reflects the prior; if a calibration is poor, the posterior will be forced away from the prior. We use this approach to test two fossil dates recently proposed as standard calibrations within vertebrates. The proposed bird-crocodile calibration (approx. 247Myr ago) appears to be accurate, but the proposed bird-lizard calibration (approx. 255Myr ago) is substantially too recent.  相似文献   

10.
Although temporal calibration is widely recognized as critical for obtaining accurate divergence-time estimates using molecular dating methods, few studies have evaluated the variation resulting from different calibration strategies. Depending on the information available, researchers have often used primary calibrations from the fossil record or secondary calibrations from previous molecular dating studies. In analyses of flowering plants, primary calibration data can be obtained from macro- and mesofossils (e.g., leaves, flowers, and fruits) or microfossils (e.g., pollen). Fossil data can vary substantially in accuracy and precision, presenting a difficult choice when selecting appropriate calibrations. Here, we test the impact of eight plausible calibration scenarios for Nothofagus (Nothofagaceae, Fagales), a plant genus with a particularly rich and well-studied fossil record. To do so, we reviewed the phylogenetic placement and geochronology of 38 fossil taxa of Nothofagus and other Fagales, and we identified minimum age constraints for up to 18 nodes of the phylogeny of Fagales. Molecular dating analyses were conducted for each scenario using maximum likelihood (RAxML + r8s) and Bayesian (BEAST) approaches on sequence data from six regions of the chloroplast and nuclear genomes. Using either ingroup or outgroup constraints, or both, led to similar age estimates, except near strongly influential calibration nodes. Using "early but risky" fossil constraints in addition to "safe but late" constraints, or using assumptions of vicariance instead of fossil constraints, led to older age estimates. In contrast, using secondary calibration points yielded drastically younger age estimates. This empirical study highlights the critical influence of calibration on molecular dating analyses. Even in a best-case situation, with many thoroughly vetted fossils available, substantial uncertainties can remain in the estimates of divergence times. For example, our estimates for the crown group age of Nothofagus varied from 13 to 113 Ma across our full range of calibration scenarios. We suggest that increased background research should be made at all stages of the calibration process to reduce errors wherever possible, from verifying the geochronological data on the fossils to critical reassessment of their phylogenetic position.  相似文献   

11.
Cardiac output (CO) monitoring is essential for the optimal management of critically ill patients. Several mathematical methods have been proposed for CO estimation based on pressure waveform analysis. Most of them depend on invasive recording of blood pressure and require repeated calibrations, and they suffer from decreased accuracy under specific conditions. A new systolic volume balance (SVB) method, including a simpler empirical form (eSVB), was derived from basic physical principles that govern blood flow and, in particular, a volume balance approach for the conservation of mass ejected into and flowed out of the arterial system during systole. The formulas were validated by a one-dimensional model of the systemic arterial tree. Comparisons of CO estimates between the proposed and previous methods were performed in terms of agreement and accuracy using "real" CO values of the model as a reference. Five hundred and seven different hemodynamic cases were simulated by altering cardiac period, arterial compliance, and resistance. CO could be accurately estimated by the SVB method as follows: CO = C × PP(ao)/(T - P(sm) × T(s)/P(m)) and by the eSVB method as follows: CO = k × C × PP(ao)/T, where C is arterial compliance, PP(ao) is aortic pulse pressure, T is cardiac period, P(sm) is mean systolic pressure, T(s) is systolic duration, P(m) is mean pressure, and k is an empirical coefficient. SVB applied on aortic pressure waves did not require calibration or empirical correction for CO estimation. An empirical coefficient was necessary for brachial pressure wave analysis. The difference of SVB-derived CO from model CO (for brachial waves) was 0.042 ± 0.341 l/min, and the limits of agreement were -0.7 to 0.6 l/min, indicating high accuracy. The intraclass correlation coefficient and root mean square error between estimated and "real" CO were 0.861 and 0.041 l/min, respectively, indicating very good accuracy. eSVB also provided accurate estimation of CO. An in vivo validation study of the proposed methods remains to be conducted.  相似文献   

12.
CO(2) transfer conductance from the intercellular airspaces of the leaf into the chloroplast, defined as mesophyll conductance (g(m)), is finite. Therefore, it will limit photosynthesis when CO(2) is not saturating, as in C3 leaves in the present atmosphere. Little is known about the processes that determine the magnitude of g(m). The process dominating g(m) is uncertain, though carbonic anhydrase, aquaporins, and the diffusivity of CO(2) in water have all been suggested. The response of g(m) to temperature (10 degrees C-40 degrees C) in mature leaves of tobacco (Nicotiana tabacum L. cv W38) was determined using measurements of leaf carbon dioxide and water vapor exchange, coupled with modulated chlorophyll fluorescence. These measurements revealed a temperature coefficient (Q(10)) of approximately 2.2 for g(m), suggesting control by a protein-facilitated process because the Q(10) for diffusion of CO(2) in water is about 1.25. Further, g(m) values are maximal at 35 degrees C to 37.5 degrees C, again suggesting a protein-facilitated process, but with a lower energy of deactivation than Rubisco. Using the temperature response of g(m) to calculate CO(2) at Rubisco, the kinetic parameters of Rubisco were calculated in vivo from 10 degrees C to 40 degrees C. Using these parameters, we determined the limitation imposed on photosynthesis by g(m). Despite an exponential rise with temperature, g(m) does not keep pace with increased capacity for CO(2) uptake at the site of Rubisco. The fraction of the total limitations to CO(2) uptake within the leaf attributable to g(m) rose from 0.10 at 10 degrees C to 0.22 at 40 degrees C. This shows that transfer of CO(2) from the intercellular air space to Rubisco is a very substantial limitation on photosynthesis, especially at high temperature.  相似文献   

13.
Photosynthetic characteristics in rice (Oryza sativa L.) leaves were examined after treatment with low temperature (15 degrees C) and high irradiance (1,500 micromol quanta m(-2) s(-1)). Decreases in quantum efficiencies in PSII (PhiPSII) and PSI (PhiPSI) and in the rate of CO2 assimilation were observed with a decrease in the maximal quantum efficiency of PSII (F(v)/F(m)) by simultaneous measurements of Chl fluorescence, P700+ absorbance and gas exchange. The decreases in PhiPSII were most highly correlated with those in CO2 assimilation. Although the initial (the activity immediately measured upon extraction) and total (the activity following pre-incubation with CO2 and Mg2+) activities of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) decreased slightly, the maximal activity (the activity following treatment with SO4(2-)) of Rubisco remained almost constant. These results indicate that the decrease in CO2 assimilation rate with the decreasing F(v)/F(m) was not caused by a decrease in Rubisco activity but rather by a decrease in RuBP regeneration capacity which resulted from the decrease in the rate of the linear electron transport. On the other hand, the decrease in PhiPSI was very small and the ratio of PhiPSI to PhiPSII increased. The de-epoxidation state of xanthophyll cycle pigments also increased. Thus, the cyclic electron transport around PSI occurred in photoinhibited leaves.  相似文献   

14.
Many scientific instruments utilise multiple element detectors, e.g. CCD's or photodiode arrays, to monitor the change in a position of an optical pattern. For example. instruments for affinity biosensing based on surface plasmon resonance (SPR) or resonant mirror are equipped with such detectors. An important and desired property of these bioanalytical instruments is that the calculation of the movement or change in shape follows the true change. This is often not the case and it may lead to linearity errors, and to sensitivity errors. The sensitivity is normally defined as the slope of the calibration curve. A new parameter is introduced to account for the linearity errors, the sensitivity deviation, defined as the deviation from the undistorted slope of the calibration curve. The linearity error and the sensitivity deviation are intimately related and the sensitivity deviation may lead to misinterpretation of kinetic data, mass transport limitations and concentration analyses. Because the linearity errors are small (e.g. 10 pg/mm2 of biomolecules on the sensor surface) with regard to the dynamic range (e.g. 30,000 pg/mm2), they can be difficult to discover. However, the linearity errors are often not negligible with regard to a typical response (e.g. 0-100 pg/mm2). and may therefore cause serious problems. A method for detecting linearity errors is outlined. Further on, this paper demonstrates how integral linearity errors of less than 1% can result in a sensitivity deviation of 10%, a value that in our opinion cannot be ignored in biospecific interaction analysis (BIA). It should also be stressed out that this phenomenon also occurs in other instruments using array detectors.  相似文献   

15.
Lateral diffusion of CO(2) was investigated in photosynthesizing leaves with different anatomy by gas exchange and chlorophyll a fluorescence imaging using grease to block stomata. When one-half of the leaf surface of the heterobaric species Helianthus annuus was covered by 4-mm-diameter patches of grease, the response of net CO(2) assimilation rate (A) to intercellular CO(2) concentration (C(i)) indicated that higher ambient CO(2) concentrations (C(a)) caused only limited lateral diffusion into the greased areas. When single 4-mm patches were applied to leaves of heterobaric Phaseolus vulgaris and homobaric Commelina communis, chlorophyll a fluorescence images showed dramatic declines in the quantum efficiency of photosystem II electron transport (measured as F(q)'/F(m)') across the patch, demonstrating that lateral CO(2) diffusion could not support A. The F(q)'/F(m)' values were used to compute images of C(i) across patches, and their dependence on C(a) was assessed. At high C(a), the patch effect was less in C. communis than P. vulgaris. A finite-volume porous-medium model for assimilation rate and lateral CO(2) diffusion was developed to analyze the patch images. The model estimated that the effective lateral CO(2) diffusion coefficients inside C. communis and P. vulgaris leaves were 22% and 12% of that for free air, respectively. We conclude that, in the light, lateral CO(2) diffusion cannot support appreciable photosynthesis over distances of more than approximately 0.3 mm in normal leaves, irrespective of the presence or absence of bundle sheath extensions, because of the CO(2) assimilation by cells along the diffusion pathway.  相似文献   

16.
Based on the curvilinear relationship between leaf nitrogen content and the initial slope of the response of CO(2) assimilation (A:) to intercellular CO(2) concentrations (C:(i)) in apple, it is hypothesized that Rubisco activation state decreases with increasing leaf N content and this decreased activation state accounts for the curvilinear relationship between leaf N and CO(2) assimilation. A range of leaf N content (1.0-5.0 g m(-2)) was achieved by fertilizing bench-grafted Fuji/M.26 apple (Malus domestica Borkh.) trees for 45 d with different N concentrations, using a modified Hoagland's solution. Analysis of A:/C:(i) curves under saturating light indicated that CO(2) assimilation at ambient CO(2) fell within the Rubisco limitation region of the A:/C:(i) curves, regardless of leaf N status. Initial Rubisco activity showed a curvilinear response to leaf N. In contrast, total Rubisco activity increased linearly with increasing leaf N throughout the leaf N range. As a result, Rubisco activation state decreased with increasing leaf N. Both light-saturated CO(2) assimilation at ambient CO(2) and the initial slope of the A:/C:(i) curves were linearly related to initial Rubisco activity, but curvilinearly related to total Rubisco activity. The curvatures in the relationships of both light-saturated CO(2) assimilation at ambient CO(2) and the initial slope of the A:/C:(i) curves with total Rubisco activity were more pronounced than in their relationships with leaf N. This was because the ratio of total Rubisco activity to leaf N increased with increasing leaf N. As leaf N increased, photosynthetic N use efficiency declined with decreasing Rubisco activation state.  相似文献   

17.
2009年4-10月,通过田间试验,以传统无膜漫灌为对照,研究了膜下滴灌对我国新疆棉田生态系统净初级生产力、土壤异氧呼吸和CO2净交换通量的影响.结果表明:膜下滴灌和无膜漫灌处理下,棉田生态系统净初级生产力、土壤异氧呼吸通量和CO2净交换通量均呈先增大后减小的变化趋势.与无膜漫灌相比,膜下滴灌显著提高了棉花地上、地下生物量和净初级生产力,降低了土壤异氧呼吸通量.在整个生长季节,膜下滴灌处理的年土壤异氧呼吸通量为214 g C·m-2,低于无膜漫灌处理的317 g C·m-2;膜下滴灌处理的棉花年净初级生产力为1030 g C·m-2,显著高于无膜漫灌处理的649 g C·m-2;膜下滴灌处理比无膜漫灌处理多固定大气CO2479 g C·m-2.膜下滴灌栽培措施既提高了作物生产力,又降低了土壤CO2排放,是干旱地区一种重要的农业固碳减排措施.  相似文献   

18.
Doi M  Shimazaki K 《Plant physiology》2008,147(2):922-930
The stomata of the fern Adiantum capillus-veneris lack a blue light-specific opening response but open in response to red light. We investigated this light response of Adiantum stomata and found that the light wavelength dependence of stomatal opening matched that of photosynthesis. The simultaneous application of red (2 micromol m(-2) s(-1)) and far-red (50 micromol m(-2) s(-1)) light synergistically induced stomatal opening, but application of only one of these wavelengths was ineffective. Adiantum stomata did not respond to CO2 in the dark; the stomata neither opened under a low intercellular CO2 concentration nor closed under high intercellular CO2 concentration. Stomata in Arabidopsis (Arabidopsis thaliana), which were used as a control, showed clear sensitivity to CO2. In Adiantum, stomatal conductance showed much higher light sensitivity when the light was applied to the lower leaf surface, where stomata exist, than when it was applied to the upper surface. This suggests that guard cells likely sensed the light required for stomatal opening. In the epidermal fragments, red light induced both stomatal opening and K+ accumulation in guard cells, and both of these responses were inhibited by a photosynthetic inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The stomatal opening was completely inhibited by CsCl, a K+ channel blocker. In intact fern leaves, red light-induced stomatal opening was also suppressed by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. These results indicate that Adiantum stomata lack sensitivity to CO2 in the dark and that stomatal opening is driven by photosynthetic electron transport in guard cell chloroplasts, probably via K+ uptake.  相似文献   

19.
The mechanisms of photoprotection of photosynthesis and dissipation of excitation energy in rice leaves in response to potassium (K) deficiency were investigated. Net photosynthetic rate and the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase decreased under K deficiency. Compared with the control, non-photochemical quenching of Chl fluorescence increased in K-deficient plant, whereas the efficiency of excitation transfer (F'(v)/F'(m)) and the photochemical quenching coefficient (q(P)) decreased. Thus, thermal dissipation of excitation energy increased as more excess electrons were accumulated in the photosynthetic chain. The electron transport rate through PSII (J(f)) was more sensitive to O2 concentration, and the fraction of electron transport rate required to sustain CO2 assimilation and photorespiration (J(g)/J(f)) was significantly decreased under K deficiency compared with the control. Furthermore, the alternative electron transport (J(a)/J(f)) was increased, indicating that a considerable amount of electrons had been transported to O2 during the water-water cycle in the K-deficient leaves. Although the fraction of electron transport to photorespiration (J(o)/J(f)) was also increased in the K-deficient leaves, it was less sensitive than that of the water-water cycle. With the generation of reactive oxygen species level, the activities of superoxide dismutase and ascorbate peroxidase, two of the key enzymes involved in scavenging of active oxygen species in the water-water cycle, also increased in K-deficient rice. Therefore, it is likely that a series of photoprotective mechanisms were initiated in rice plants in response to K deficiency and the water-water cycle might be critical for protecting photosynthetic apparatus under K deficiency in rice.  相似文献   

20.
Bench-grafted Fuji/M.26 apple (Malus domestica Borkh.) trees were fertigated with different concentrations of nitrogen by using a modified Hoagland's solution for 45 d. CO(2) assimilation and photosystem II (PSII) quantum efficiency in response to incident photon flux density (PFD) were measured simultaneously in recent fully expanded leaves under low O(2) (2%) and saturated CO(2) (1300 micromol mol(-1)) conditions. A single curvilinear relationship was found between true quantum yield for CO(2) assimilation and PSII quantum efficiency for leaves with a wide range of leaf N content. The relationship was linear up to a quantum yield of approximately 0.05 mol CO(2) mol(-1) quanta. It then became curvilinear with a further rise in quantum yield in response to decreasing PFD. This relationship was subsequently used as a calibration curve to assess the rate of non-cyclic electron transport associated with Rubisco and the partitioning of electron flow between CO(2) assimilation and photorespiration in different N leaves in response to intercellular CO(2) concentration (C(i)) under normal O(2) conditions. Both the rate of non-cyclic electron flow and the rate of electron flow to CO(2) or O(2) increased with increasing leaf N at any given C(i). The percentage of non-cyclic electron flow to CO(2) assimilation, however, remained the same regardless of leaf N content. As C(i) increased, the percentage of non-cyclic electron flow to CO(2) assimilation increased. In conclusion, the relationship between PSII quantum efficiency and quantum yield for CO(2) assimilation and the partitioning of electron flow between CO(2) assimilation and photorespiration are not affected by N content in apple leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号