首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An easy and manageable in vitro screening system for drought tolerance of sunflower seedlings based on MS media supplemented with polyethylene glycol 6000 was evaluated. Morphological and physiological parameters were compared between control (-0.05 MPa) and drought-stressed (-0.6 MPa) seedlings of Helianthus annuus L. cv. Peredovick. There was a significant growth deficit in drought-stressed plants compared to control plants in terms of hypocotyl length, and shoot and root fresh mass. Shoot growth was more restricted than root growth, resulting in an increased root/shoot ratio of drought-stressed plants. Accumulation of osmolytes such as inositol (65-fold), glucose (58-fold), proline (55-fold), fructose (11-fold) and sucrose (eightfold), in leaves of drought-stressed plants could be demonstrated by gas-liquid chromatography. Soluble protein patterns of leaves were analysed with two-dimensional gel electrophoresis (2D-PAGE) and MALDI-TOF mass spectrometry. A set of 46 protein spots allowed identification of 19 marker proteins. Quantitative changes in protein expression of drought-stressed versus control plants were detected. In leaves of drought-stressed sunflower seedlings six proteins were significantly up-regulated more than twofold: a putative caffeoyl-CoA 3-O-methyltransferase (4.5-fold), a fructokinase 3 (3.3-fold), a vegetative storage protein (2.5-fold), a glycine-rich RNA binding protein (2.2-fold), a CuZn-superoxide dismutase (2.1-fold) and an unknown low molecular weight protein (2.3-fold). These proteins represent general stress proteins induced under drought conditions or proteins contributing to basic carbon metabolism. The up-regulated proteins are interesting candidates for further physiological and molecular investigations regarding drought tolerance in sunflower.  相似文献   

2.
Immature embryos from inbred commercial cultivars of sunflower (Helianthus annuus L.) were used as donor material for induction of regenerable tissue in vitro. Optimum regeneration frequencies were obtained by transferring the tissue through a sequence of defined media using a specified timetable. The first medium was characterized by a high sucrose content (12%), 10 M 2,4-dichlorophenoxyacetic acid and 5 M abscisic acid. Within 7 days, proliferation of smooth, white, dedifferentiated tissue from the cotyledons was evident. After 3 weeks, the tissues were transferred through a series of 3 media, designed to promote shoot formation, shoot elongation and rooting. Regenerates were obtained with all 7 genotypes tested. From 1983 to 1984, approximately 500 primary R0 plantlets were regenerated, grown to maturity in a greenhouse and self-pollinated. The resultant R1 seeds were subsequently field-grown and the plants were evaluated for variation.  相似文献   

3.
Summary We describe a protocol, and several experiments that helped lead to its development, for sunflower regeneration. Important factors for sunflower regeneration were explant age, cytokinin type and concentration, basal medium, and explant source. We could not induce shoot regeneration from the explants derived from mature tissues including leaf, petiole, and stem. However, use of juvenile explants such as embryo meristem and primordial leaf tissues allowed routine regeneration of 17 different sunflower genotypes. High frequency of shoot regeneration was achieved with these explants taken from seedlings up to 5 d after germination. Explant age was less critical for embryo meristem explants than for primordial leaf tissues. Of the four basal media tested, MS and B5 media produced higher shoot-regeneration frequencies than did Anderson and woody plant media. The highest shoot-regeneration frequency was obtained with MS medium supplemented with 2 μM BA and without auxin. Addition of 1 μM naphthalene-acetic acid to the medium significantly reduced both the percentage of explants producing shoots and average number of shoots per explant. Regenerated shoots were grown to maturity in a greenhouse.  相似文献   

4.
The cultivated sunflower (Helianthus annuus L.) is one of the most important oil crops in the world. The importance of sunflower oil in human nutrition and in the chemical industry makes the sunflower a major research interest. An essential element for genomic libraries is the preparation of high molecular weight (HMW) DNA. We developed 2 methods for isolating HMW sunflower DNA. We prepared the DNA from nuclei and from protoplasts isolated from mesophyll tissue with the enzymes cellulase RS and pectolyase Y23. The HMW DNA was digested with restriction endonucleases. The ethidium bromide-stained gel suggested the DNA to be completely digested. These results were confirmed by Southern analysis using a radiolabeled RFLP marker. Both methods made it possible to generate sufficient quantities of megabase-size sunflower DNA suitable for bacterial artificial chromosome (BAC) cloning.  相似文献   

5.
Nonoilseed sunflower (Helianthus annuus L.) is naturally higher in cadmium (Cd) than many other grain crops. Because raising soil pH usually depresses Cd uptake by most species, a study was designed to determine if application of agricultural limestone to neutralize soil acidity would decrease Cd uptake by sunflower plants grown on different soils in the production area of North Dakota. The field experiments were conducted at 3 locations in 1991 and 2 locations in 1992. At each site, limestone was applied to bring soil pH to 6.5–7.0, or an additional 45 Mg ha-1 more limestone was applied, and these two treatments were compared to no-lime control. Commercial nonoilseed hybrid 954 was planted in these experiments. The rapid short-term lime-soil reaction occurred in first 12 weeks following limestone application. Mean kernel Cd concentration for each treatment varied from 0.35 to 1.45 mg kg-1 DW in the first year of the experiments, and from 0.37 to 1.23 mg kg-1 DW in the experiments of 1992 across all locations. Large variations in kernel Cd levels between locations were obtained. There were no significant differences among control and limestone treatments for kernel Cd, seedling leaf Cd and diagnostic leaf Cd within each location, respectively. In regression analysis, we found that kernel Cd level correlated with diagnostic leaf Cd concentration in each treatment, but poor correlations were obtained among other variables. These results indicated that limestone application did not reduce Cd uptake and transfer to kernels of sunflower, in contrast with most species studied.  相似文献   

6.
Systemic acquired resistance in sunflower (Helianthus annuus L.)   总被引:1,自引:0,他引:1  
Systemic acquired resistance (SAR) to infection by Botrytis cinerea in the leaves of sunflower (Helianthus annuus L.) plants was induced following cotyledon inoculation with B. cinerea or treatment with abiotic inducers. Salicylic acid (SA), benzo-(1,2,3)-thiadiazole-7-carbothioic S-methyl ester (BTH), 2,6-dichloroisonicotinic acid (INA) or EDTA protected sunflower plants against Botrytis infection, that was revealed by a reduction in the number and area of the necrotic lesions in upper leaves after challenge inoculation with the pathogen. SA and BTH were more potent inducers than INA, EDTA or pre-inoculation with the fungus. In addition to resistance to B. cinerea, the upper leaves have also developed resistance to maceration by a mixture of cell wall-degrading enzymes. Calcium nitrate inhibited both the protective effect and the resistance of leaf discs to cell-wall degrading enzymes. All the tested chemicals increased the synthesis and excretion of sunflower phytoalexins--coumarins scopoletin and ayapin and induced the PR-proteins chitinase and 1,3-beta-glucanase, being the inducer effect of each activator correlated with the level of protection against B. cinerea (BTH > SA > INA > EDTA). Thus, SAR induction is mediated by general increase of plant defence responses. This is the first report on SAR in sunflower.  相似文献   

7.
8.
The suitability of sunflower plants (Helianthus annuus L.) for the phytoremediation of soils and waters contaminated with radioactive iodine was tested following the 125I uptake from a hydroponic medium and translocation during 32-day cultivation. The plants accumulated about 26% of the applied activity in case of combination of 125I (1.3 MBq) and 0.1 mM K127I (“carrier 125I”) and 47% when only 125I (1.3 MBq, “non-carrier 125I”) was added. When hydroponic medium was changed for the fresh one every 4 days, the plants accumulated up to 59% of starting activity of non-carrier 125I. The 125I distribution within the plant was followed using autoradiography. At low iodine level (non-carrier 125I) the radionuclide was localized mainly in the roots. At high iodine concentrations (carrier 125I) it was found mainly in the upper part of sunflower plants. All iodine removed from the liquid medium was found in the plant body. Volatilization of iodine (in the form of I0 or volatile organic compounds) apparently did not occur during accumulation and translocation. The achieved results indicate that sunflower can be used for phytoremediation of radioactive iodine, even if it is not its hyperaccumulator.  相似文献   

9.
An attempt was made to assess the phytotoxicity of oxadiargyl on two crop plants, viz. sunflower and maize. The seed germination and early growth studies were carried out in hydroponic conditions with each variety of two crop plants, viz. sunflower (Morden) and maize (NAC-6004) supplemented with five concentrations of oxadiargyl. Seed germination and early growth of both the crop plants were significantly affected with increased concentration of oxadiargyl. The length of radicle and plumule was severely reduced along with increase in herbicidal concentration. Similarly, the calculated value of tolerance index and vigour index decreased drastically with increase in concentration of oxadiargyl. On the contrary, the per cent phytotoxicity also increased with increase in oxadiargyl concentration. Further, the pigment system of both the crop seedlings was severely affected by the herbicide oxadiargyl. These studies clearly indicate that oxadiargyl is phototoxic in nature.  相似文献   

10.
Rodríguez  Daniel  Zubillaga  M.M.  Ploschuk  E.L.  Keltjens  W.G.  Goudriaan  J.  Lavado  R.S. 《Plant and Soil》1998,202(1):133-147
Reductions in leaf area and plant growth as a consequence of phosphorus (P) limitations have been attributed both to direct effects of P shortage on leaf expansion rate and to a reduced production of assimilates required for growth. Canopy assimilation and leaf area expansion are closely interrelated processes. In this work we used experimental and simulation techniques to identify and study their importance in determining leaf area on sunflower (Helianthus annuus L.) growing under P-deficient conditions. Experiment 1 was done outdoors, in Buenos Aires, Argentina, and Experiment 2 in a glasshouse in Wageningen, The Netherlands. In both experiments we studied the effects of soil P addition on leaf appearance, leaf expansion, dry matter accumulation, and leaf photosynthesis of non-water stressed plants grown in pots containing a P-deficient soil. Before sowing the equivalent amounts of 0–600 kg of super phosphate ha-1 were added to the pots. Phosphorus deficiency delayed leaf appearance increasing the value of the phyllochron (PHY) up to 76%, the rate of leaf area expansion during the quasi-linear phase of leaf expansion (LER) was reduced by up to 74%, with respect to high P plants. Phosphorus deficiency reduced by up to 50% the rate of light saturated photosynthesis per unit of leaf area (AMAX) in recently expanded leaves, while at low levels of leaf insertion in the canopy, AMAX was reduced by up to 85%, when compared to that in high P plants. Phosphorus deficiency also reduced the duration of the quasi-linear phase of leaf expansion by up to eight days. The values of LER were related (r = 0.56, P < 0.05) to the mean concentration of P in all the leaves (Leaves P%) and not to the concentration of P in the individual leaf where LER was determined (r = 0.22, P < 0.4) suggesting that under P deficiency individual leaf expansion was not likely to be regulated by the total P concentration at leaf level. The values of AMAX of individual leaves were related (r = 0.79, P < 0.01) to the concentration of total P in the corresponding leaf (Leaf P%). LER showed a hyperbolic relationship with Leaves P% (R2 = 0.94, P < 0.01, n = 13) that saturate at 0.14%. AMAX showed a hyperbolic relationship with Leaf P% (R2 = 0.73, P < 0.01, n = 53) that saturated with values of Leaf P% higher than 0.22. A morphogenetic model of leaf area development and growth was developed to quantify the effect of assimilate supply at canopy level on total leaf area expansion, and to study the effects of model parameters on the growth of sunflower plants under P-deficient conditions. With this model we identified the existence of direct effects of P deficiency on individual leaf area expansion. However, we calculated that under mild P stress conditions up to 83% of the reduction in the observed leaf area was explained by the particular effects of P% on the rate of leaf appearance, on the duration of the linear period of leaf expansion, and on the value of AMAX. We also calculated that the effects of P deficiency on the value of AMAX alone, explained up to 41% of the observed reductions in total leaf area between the highest and the intermediate P level in Experiment 2. Possible mechanisms of action of the direct effects of P on individual leaf expansion are discussed in this paper.  相似文献   

11.
The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U-(14)C6]glucose or [U-(14)C5]glutamine and measuring their conversion to CO2, oil, protein and other biomass compounds. The average carbon conversion efficiency was 50%, which contrasts with a value of over 80% previously observed in Brassica napus embryos (Goffman et al., 2005), in which light and the RuBisCO bypass pathway allow more efficient conversion of hexose to oil. Labeling levels after incubating sunflower embryos with [U-(14)C4]malate indicated that some carbon from malate enters the plastidic compartment and contributes to oil synthesis. To test this and to map the underlying pattern of metabolic fluxes, separate experiments were carried out in which embryos were labeled to isotopic steady state using [1-(13)C1]glucose, [2-(13)C1]glucose, or [U-(13)C5]glutamine. The resultant labeling in sugars, starch, fatty acids and amino acids was analyzed by NMR and GC-MS. The fluxes through intermediary metabolism were then quantified by computer-aided modeling. The resulting flux map accounted well for the labeling data, was in good agreement with the observed carbon efficiency, and was further validated by testing for agreement with gas exchange measurements. The map shows that the influx of malate into oil is low and that flux through futile cycles (wasting ATP) is low, which contrasts with the high rates previously determined for growing root tips and heterotrophic cell cultures.  相似文献   

12.
During sunflower (Helianthus annuus L.) seed formation there was an active period of lipid biosynthesis between 12 and 28 days after flowering (DAF). The maximum in-vitro acyl-acyl carrier protein (ACP) thioesterase activities (EC 3.1.2.14) were found at 15 DAF, preceding the largest accumulation of lipid in the seed. Data from the apparent kinetic parameters, V max and K m, from seeds of 15 and 30 DAF, showed that changes in acyl-ACP thioesterase activity are not only quantitative, but also qualitative, since, although the preferred substrate was always oleoyl-ACP, the affinity for palmitoyl-ACP decreased, whereas that for stearoyl-ACP increased with seed maturation. Bisubstrate assays carried out at 30 DAF seemed to indicate that the total activity found in mature seeds is due to a single enzyme with 100/75/15 affinity for oleoyl-ACP/stearoyl-ACP/palmitoyl-ACP. In contrast, at 15 DAF, enzymatic data together with partial sequences from cDNAs indicated the presence of at least two enzymes with different properties, a FatA-like thioesterase, with a high affinity for oleoyl-ACP, plus a FatB-like enzyme, with preference for long-chain saturated fatty acids, both being expressed during the active lipid biosynthesis period. Competition assays carried out with CAS-5, a mutant with a higher content of palmitic acid in the seed oil, indicated that a modified FatA-type thioesterase is involved in the mutant phenotype. Received: 17 December 1999 / Accepted: 25 February 2000  相似文献   

13.
The nuclear male sterility (NMS) trait is a useful tool for sunflower (Helianthus annuus L.) breeding and genetic programs. Previously, we induced NMS mutants in cultivated line HA 89. The mutants possessed single recessive genes ms 6, ms 7, and ms 8, respectively, in NMS HA 89-872, NMS HA 89-552, and NMS HA 89-747. Bulked segregant analysis based on the male-fertile and male-sterile DNA pools and 560 simple sequence repeat and insertion/deletion markers randomly selected from 17 linkage groups (LGs) were used to locate ms 6 to LG16, ms 7 to LG6, and ms 8 to LG5. Subsequent genotyping of three F2 populations of 88, 93, and 76 individuals confirmed their map positions. Additional polymorphic markers derived from four restriction fragment length polymorphism-converted sequence-tagged site primer pairs were identified. A partial linkage map consisting of eight markers was constructed for the ms 6 locus, covering a region of 69.24 cM, with markers ORS807 and ORS996 flanking the ms 6 locus at distances of 7.2 and 18.5 cM, respectively. Six markers were constructed for ms 7, covering a region of 53.4 cM, with ORS608 and ORS1229 flanking ms 7 at distances of 2.6 and 9.5 cM, respectively. Ten markers were constructed for ms 8, covering a region of 18.0 cM, with six markers below ms 8 and CRT518 above flanking ms 8 at distances of 7.4 and 3.8 cM, respectively. The markers and mapping information will be useful for selection of the recessive NMS genes in sunflower breeding programs.  相似文献   

14.
The effects of Ethylenediamine disuccinic acid (EDDS) (0 and 5?mmol·kg?1) as a synthetic chemical amendment, vermicompost (0 and 5%w/w) as an organic amendment and their combined application were evaluated for the phytoextraction by sunflower (Helianthus annuus L.) of cadmium (Cd) and lead (Pb) at three artificial contamination levels in soils (0, 50, and 100?mg·kg?1 for Cd and 0, 100, and 200?mg·kg?1 for Pb). The results showed that the application of EDDS was the most effective method to increase Pb and Cd concentrations in both parts of the plant. The results also showed that the application of EDDS increased 9.27% shoot Pb content at 200?mg·kg?1 but decreased 15.95% shoot Cd content at 100?mg·kg?1 contamination level with respect to the respective controls. The bioavailable concentrations of Cd at 100?mg·kg?1 and Pb at 200?mg·kg?1 contamination level in the soil at the end of experiment increased 25% and 26%, respectively after the application of EDDS but vermicompost decreased 43.28% the bioavailable Pb concentration relative to their controls. Vermicompost increased the remediation factor index of Cd, thus making it the best treatment for the phytoextraction of Cd. The combined application of EDDS and vermicompost was the best amendment for Pb phytoextraction.  相似文献   

15.
Prolyl iminopeptidase from sunflower seed (Helianthus annuus L.) was purified to molecular homogeneity. It is a 105-kDa heterodimer consisting of two subunits: 53 and 55 kDa. It has pI of 6.2 and optimal activity at pH 8.0–8.5 and 45–50°C. The inhibitory analysis was inconclusive about its catalytic machinery, as a significant degree of modification was not observed with any of the used diagnostic inhibitors. Its specificity is restricted to removal of N-terminal prolyl residues.  相似文献   

16.
Using four tester lines an analysis of combining abilities for seed yield, seed moisture content and seed oil content was performed on 39 cultivated sunflower populations originating from ten countries. A between-populations structure based on specific combining abilities (SCA) was designed, defining separate combining-groups for each of the four testers. This structure corresponds to the country in which the populations originated.  相似文献   

17.
"Cavitation fatigue" is the increased susceptibility of a xylem conduit to cavitation as a result of its prior cavitation. It was investigated whether cavitation fatigue induced in vivo could be repaired in intact plants. Sunflowers (Helianthus annuus L.) were subjected to soil drought in the greenhouse. Native embolism and vulnerability to cavitation was measured in well-watered controls and after 5 d and 10 d of controlled drought. A dramatic cavitation fatigue was observed where droughted xylem that was refilled in the laboratory developed up to 60 PLC (percentage loss of hydraulic conductivity) at -1 MPa versus only 5.2 PLC in non-droughted controls. Rewatered plants showed the complete reversal of cavitation fatigue over 4 d. Reversal of fatigue was correlated with the refilling of embolized vessels in the intact plants (r(2)=0.91, P<0.01), suggesting that xylem transport to fatigued vessels was required for their repair. The in vivo reversal of fatigue was partially duplicated in excised stem segments by perfusing them with root exudates from droughted (DR) and well-watered (WW) plants. The DR exudate had a greater effect, and this was associated with a greater pH in the DR versus WW saps, but there was no difference in total cation concentration. Perfusions with 2 mM CaCl(2) and KCl solutions also partially reversed cavitation fatigue as opposed to no effect with deionized water, suggesting a role of ions in addition to a pH effect. It is suspected that fatigue is caused by stretching and partial disruption of linkages between cellulose microfibrils in inter-conduit pit membranes during air seeding, and that the reversal of fatigue involves restoring these linkages by ingredients in xylem sap.  相似文献   

18.
The aim of the present study was to investigate the capability of Sunflower (Helianthus annuus L.) to tolerate and accumulate high amount of lead (Pb) and propose it for soil phytoremediation. To this regard, plants were grown in hydroponics and treated with different Pb concentrations (10 to 160 ??M) and a fixed concentration (500 ??M) EDTA (ethylene diamine tetra acetic acid) for 14 and 28 days (d). Effects on total biomass production, photosynthetic pigments and protein contents as well as the quantities of non protein thiols (NP-SH), glutathione (GSH), phytochelatins (PCs) and activity of glutathione reductase (GR) were estimated. Results revealed that roots (575 ??g g?1 DW) and shoots (135 ??g g?1 DW) accumulated Pb after 28 d of exposure, however, addition of EDTA enhanced the Pb accumulation in roots (645 ??g g?1 DW) and shoots (255 ??g g?1 DW ). Exposure of Pb (28 d) registered a significant (P?<?0.05) reduction in growth parameters and induction of phytochelatins (P?<?0.05; r?=?0.26) plus some of the important antioxidants (P?<?0.05; r?=?0.42), which were positively correlated to metal accumulation. Sunflower exposed at 40 ??M of Pb for 28 d synthesized higher quantity of PC2 (18.5 fold) and PC3 (10.5 fold), as compared to control. However, the results showed that addition of EDTA resulted in low toxicity compared to Pb alone. These data support the capability of H. annuus L. to accumulate and tolerate significant quantity of Pb and its utility for phytoremediation. This is because of the plant has the capacity to combat metal induced oxidative stress via significant synthesis of NP-SH, GSH and high activity of GR, as it would provide sufficient GSH not only for PCs synthesis but also for antioxidant function.  相似文献   

19.
Two high-palmitic acid sunflower (Helianthus annuus L.) mutants, CAS-5 and CAS-12, have been biochemically characterised. The enzymatic activities found to be responsible for the mutant characteristics are β-keto-acyl-acyl carrier protein synthetase II (KASII; EC 2.3.1.41) and acyl-acyl carrier protein thioesterase (EC 3.1.2.14). Our data suggest that the high-palmitic acid phenotype observed in both mutant lines is due to the combined effect of a lower KASII activity and a higher thioesterase activity with respect to palmitoyl-acyl carrier protein (16:0-ACP). The level of the latter enzyme appeared to be insufficient to hydrolyse the produced 16:0-ACP completely. As a consequence of this, three new fatty acids appear: palmitoleic acid (16:1 Δ9), asclepic acid (18:1 Δ11), and palmitolinoleic acid (16:2 Δ9 Δ12). These fatty acids should be synthesised from palmitoyl-ACP or a derivative by the action of the stearoyl-ACP desaturase, fatty acid synthetase II and oleoyl-phosphatidylcholine desaturase, respectively. Received: 11 July 1998 / Accepted: 10 October 1998  相似文献   

20.
Abstract. The diurnal cycling of leaf water potential (Ψleaf) in field-grown sunflower ( Helianthus annuus ) was used to investigate the cause of water deficitinduced limitation of net photosynthesis. Daily midafternoon decreases in Ψleaf of up to 1.5 MPa and in net photosynthesis of up to 50% were typical for irrigated sunflower during seed filling. These midafternoon values were lowered an additional 0.6 to 0.8 MPa by prolonged drought treatment. There was a nearly linear relationship between the decline in net photosynthesis and reductions in leaf conductance over the course of the day. Thus, it was unexpected to find that the low, midafternoon rates of photosynthesis were associated with the highest intercellular CO2 concentrations. These and other observations suggest that the daily decline in photosynthesis represents a 'down regulation' of the biochemical demand for CO2 that is coordinated with the diurnally developing need to conserve water, thus establishing a balanced limitation of photosynthesis involving both stomatal and non-stomatal factors. There were no indications that either short term (i.e. diurnal declines in Ψleaf) or long term (i.e. drought treatment) water deficits caused any damage or malfunctioning of photosynthesis. Rather, both the daily declines in photosynthesis and the nearly 25% decrease in leaf area induced by prolonged drought appeared to be well-controlled adaptive responses by field-grown sunflower plants to limited water availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号