首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene for xylanase A of alkalophilic Bacillus sp. strain C-125 was cloned in Escherichia coli with pBR322. The plasmid pCX311 contained 2.6- and 2.0-kilobase-pair HindIII fragments. The characteristics of the purified pCX311-encoded xylanase were the same as those of purified xylanase A from alkalophilic Bacillus sp. strain C-125.  相似文献   

2.
一株高产木聚糖酶的枝链霉菌的分离鉴定及产酶   总被引:4,自引:0,他引:4  
对1株高产木聚糖酶的链霉菌进行了鉴定并研究其木聚糖酶的生产过程及水解产物特点。分离得到1株产木聚糖酶的链霉菌Streptomyces sp.L2001,从形态学特征、培养特征和生理生化特征等方面对该菌株进行了鉴定。PCR扩增得到16S rDNA序列全长为1429bp,分析结果表明,菌株与Streptomyces rameus NBRC3782同源性达99.16%。结合传统生理生化实验结果鉴定为枝链霉菌。菌株液体发酵6d能产生842.0U/mL木聚糖酶活力。经HPLC分析酶解产物,结果显示木二糖、木三糖及木四糖含量之和高达93.5%,该酶适用于工业化生产低聚木糖。  相似文献   

3.
The aim of this work was to isolate enzyme-producing microorganisms from the tract of the termite Reticulitermes santonensis. The microorganisms were extracted from the guts and anaerobic (CO2 or CO2/H2) and micro-aerobic atmospheres were used to stimulate growth. Three different strategies were tried out. First, the sample was spread on Petri dishes containing solid media with carboxymethylcellulose, microcrystalline cellulose or cellobiose. This technique allowed us to isolate two bacteria: Streptomyces sp. strain ABGxAviA1 and Pseudomonas sp. strain ABGxCellA. The second strategy consisted in inoculating a specific liquid medium containing carboxymethylcellulose, microcrystalline cellulose, or cellobiose. The samples were then spread on Petri dishes with the same specific medium containing carboxymethylcellulose, microcrystalline cellulose, or cellobiose. This led to the isolation of the mold Aspergillus sp. strain ABGxAviA2. Finally, the third strategy consisted in heating the first culture and spreading samples on agar plates containing rich medium. This led to the isolation of the bacterium Bacillus subtilis strain ABGx. All those steps were achieved in controlled atmospheres. The four enzyme-producing strains which were isolated were obtained by using a micro-aerobic atmosphere. Later, enzymatic assays were performed on the four strains. Streptomyces sp. strain ABGxAviA1 was found to produce only amylase, while Pseudomonas sp. strain ABGxCellA was found to produce β-glucosidase as well. Aspergillus sp. strain ABGxAviA2 showed β-glucosidase, amylase, cellulase, and xylanase activities. Finally, B. subtilis strain ABGx produced xylanase and amylase.  相似文献   

4.
A xylanase gene, xyn1, which encodes Paenibacillus sp. strain W-61 xylanase 1 (Xyn1), was cloned in Escherichia coli. xyn1 encodes 211 amino acid residues, including 28 amino acid residues of a signal peptide. The deduced amino acid sequence of the mature Xyn1 showed 95.7%, 84.0%, and 83.7% identity to family 11 xylanases of Aeromonas caviae ME-1, Paenibacillus sp., and Bacillus stearothermophilus respectively. The physico-chemical properties of recombinant Xyn1 were very similar to those of intact Xyn1, except for the molecular mass. The pattern of xylooligosaccharides generated by rXyn1 was investigated by fluorophore-assisted carbohydrate electrophoresis (FACE). The degradation rate of xylohexaose by rXyn1 increased markedly as compared with that of xylopentaose. Xylohexaose had a single preferential point of cleavage by rXyn1. On the basis of the pattern of action of xylooligosaccharides, the number of subsites was estimated to be six. The catalytic site was located between the third and the fourth subsites from non-reducing end.  相似文献   

5.
A new strain of Penicillium sp. ZH-30 that produces xylanase was isolated from soil. According to the morphology and comparison of internal transcribed spacer (ITS) rDNA gene sequence, the strain Penicillium sp. ZH-30 was identified as a strain of Penicillium oxalicum. When xylan or wheat bran was used as substrate at 30°C for 3 days under submerged cultivation, xylanase production was 5.3 and 13.3 U ml−1, respectively. The temperature and pH for optimum activity were 50°C and 5.0–6.0, respectively.  相似文献   

6.
An alkali-tolerant cellulase-free xylanase producer, WLI-11, was screened from soil samples collected from a pulp and paper mill in China. It was subsequently identified as a Pseudomonas sp. A mutant, WLUN024, was selected by consecutive mutagenesis by u.v. irradiation and NTG treatment using Pseudomonas sp. WLI-11 as parent strain. Pseudomonas sp. WLUN024 produced xylanase when grown on xylosidic materials, such as hemicellulose, xylan, xylose, and wheat bran. Effects of various nutritional factors on xylanase production by Pseudomonas sp. WLUN024 with wheat bran as the main substrate were investigated. A batch culture of Pseudomonas sp. WLUN024 was conducted under suitable fermentation conditions, where the maximum activity of xylanase reached 1245 U ml−1 after incubating at 37 °C for 24 h. Xylanase produced by Pseudomonas sp. WLUN024 was purified and the molecular weight was estimated as 25.4 kDa. Primary studies on the characteristics of the purified xylanase revealed that this xylanase was alkali-tolerant (optimum pH 7.2–8.0) and cellulase-free. In addition, the xylanase was also capable of producing high quality xylo-oligosaccharides, which indicated its application potential in not only pulp bio-bleaching processes but also in the nutraceutical industry.  相似文献   

7.
A gene expressing xylanase activity was isolated from a genomic library of Thermotoga sp. strain FjSS3-B.1. The sequence of the gene shows that it encodes a single domain, family 10 xylanase. The recombinant enzyme has extremely high thermal stability, activity over a relatively broad pH range, and activity on Pinus radiata kraft pulp.  相似文献   

8.
木聚糖酶生产菌株的筛选及产酶条件的优化   总被引:6,自引:0,他引:6  
以甘蔗渣半纤维素为碳源,从垃圾场土壤中分离到6株分解半纤维素的菌株。通过固态发酵的木聚糖酶活力比较筛选到1株木聚糖酶活力较高的菌株。该菌株18S rDNA序列与曲霉(Aspergillus sp.)的同源性达97%,根据对菌株形态学分析和18S rDNA序列分析的结果,将该菌株鉴定为曲霉HQ3。HQ3的最佳产酶条件为:甘蔗渣:麸皮为7:3(W/W),固液比为1:4(W/W),尿素0.4 %,pH7.0,温度30℃,发酵产酶时间4 d。在最佳产酶条件下,其木聚糖酶活最高可达3421U/g干曲。  相似文献   

9.
Endoglucanase and xylanase activities of three rumen protozoa, Polyplastron multivesiculatum, Eudiplodinium maggii, and Entodinium sp. were compared qualitatively by zymograms and quantitatively by measuring specific activities against different polysaccharides. A set of carboxymethylcellulases and xylanases was produced by the large ciliates whereas no band of activity was observed for Entodinium sp. in zymograms. Specific activity of endoglucanases from P. multivesiculatum (1.3 micromol mg prot(-1) min(-1)) was twice that of E. maggii, whereas xylanase specific activity (4.5 micromol mg prot(-1) min(-1)) was only half. Very weak activities were observed for Entodinium sp. A new xylanase gene, xyn11D, from P. multivesiculatum was reported and its gene product compared to 33 other family 11 xylanases. Phylogenetic analysis showed that xylanase sequences from rumen protozoa are closely related to those of bacteria.  相似文献   

10.
Xylanase produced by E. coli HB 101 carrying plasmid pCX311, which contains the xylanase A gene of alkalophilic Bacillus sp. strain C-125, was purified by ammonium sulfate precipitation, DEAE-cellulose column chromatography and Sephadex G-75 gel filtration. The purified enzyme had a molecular weight of 43,000. The pH and temperature optima for its activity were 6~10 and 70°C, respectively. The enzyme retained full activity after incubation at 50°C for 10 min. These enzymatic properties of the xylanase were almost the same as those of xylanase A. But this enzyme was less stable than xylanase A at low pHs. Furthermore, we could purify a larger amount of alkaline xylanase from E. coli than from alkalophilic Bacillus sp. strain C-125.  相似文献   

11.
Xylanase production of newly isolated thermophilic alkali-tolerant Bacillus sp. strain SP and strain BC was investigated in batch and continuous cultures. Enzyme synthesis was inducible with both strains and was observed only in xylan-containing media. Xylan from oat spelt is a better inducer than xylan from birch for strain Bacillus sp. BC while such difference was not observed for strain SP. Compared with batch cultures xylanase production of both strains increased about two times and its rate became more than four times faster in continuous cultures at a dilution rate of 0.2 h(-1).  相似文献   

12.
13.
Alkaliphilic Bacillus sp. strain 41M-1, isolated from soil, produced xylan-degrading enzymes extracellularly. Optimum pH for the crude xylanase preparation was about pH 9, confirming the production of novel alkaline xylanase(s) by the isolate. Xylanases were induced by xylan, but were not produced in the presence of xylose, arabinose or glucose. Xylanase productivity was influenced by culture pH, and production at pH 10.5 was higher than that at pH 8.0. Zymogram analysis of the culture supernatant showed the alkaline xylanase with a molecular mass of 36 kDa.  相似文献   

14.
We have shown that a xylan-degrading bacterium, W-61, excretes multiple xylanases, including xylanase 5 with a molecular mass of 140 kDa. Here, we emend the previously used classification of the bacterium (i.e., Aeromonas caviae W-61) to Paenibacillus sp. strain W-61 on the basis of the nucleotide sequence of the 16S rRNA gene, and we clone and express the xyn5 gene encoding xylanase 5 (Xyn5) in Escherichia coli and study the subcellular localization of Xyn5. xyn5 encodes 1,326 amino acid residues, including a 27-amino-acid signal sequence. Sequence analysis indicated that Xyn5 comprises two family 22 carbohydrate-binding modules (CBM), a family 10 catalytic domain of glycosyl hydrolases, a family 9 CBM, a domain similar to the lysine-rich region of Clostridium thermocellum SdbA, and three S-layer-homologous (SLH) domains. Recombinant Xyn5 bound to a crystalline cellulose, Avicel PH-101, while an N-terminal 90-kDa fragment of Xyn5, which lacks the C-terminal half of the family 9 CBM, did not bind to Avicel PH-101. Xyn5 was cell bound, and the cell-bound protein was digested by exogenous trypsin to produce immunoreactive and xylanolytic fragments with molecular masses of 80 and 60 kDa. Xyn5 was exclusively distributed in the cell envelope fraction consisting of a peptidoglycan-containing layer and an associated S layer. Thus, Paenibacillus sp. strain W-61 Xyn5 is a cell surface-anchored modular xylanase possessing a functional cellulose-binding module and SLH domains. Possible cooperative action of multiple xylanases produced by strain W-61 is discussed on the basis of the modular structure of Xyn5.  相似文献   

15.
The gene xyaA encoding an alkaline endo-beta 1,4-xylanase from an alkalophilic Bacillus sp. strain (N137) isolated in our laboratory was cloned and expressed in Escherichia coli. The nucleotide sequence of a 1,656-bp DNA fragment containing xyaA was determined, revealing one open reading frame of 993 bp that encodes a xylanase (XyaA) of 39 kDa. This xylanase lacks a typical putative signal peptide, yet the protein is found in the Bacillus culture supernatant. In Escherichia coli, the active protein is located mainly in the periplasmic space. The xylanase activity of the cloned XyaA is an endo-acting enzyme that shows optimal activity at pH 8 and 40 degrees C. This activity is stable at a pH between 6 and 11. Incubations of XyaA at 40 degrees C for 1 h destroyed 45% of the activity.  相似文献   

16.
17.
A genomic library of the Dictyoglomus sp. strain Rt46B.1 was constructed in the phage vector lambda ZapII and screened for xylanase activity. A plaque expressing xylanase activity, designated B6-77, was isolated and shown to contain a genomic insert of 5.3 kb. Subcloning revealed that the xylanase activity was restricted to a internal 1,507-bp PstI-HindIII fragment which was subsequently sequenced and shown to contain a single complete open reading frame coding for a single-domain xylanase, XynA, with a putative length of 352 amino acids. Homology comparisons show that XynA is related to the family F group of xylanases. The temperature and pH optima of the recombinant enzyme were determined to be 85 degrees C and pH 6.5, respectively. However, the enzyme was active across a broad pH range, with over 50% activity between pH 5.5 and 9.5. XynA was shown to be a true endo-acting xylanase, being capable of hydrolyzing xylan to xylotriose and xylobiose, but it could not hydrolyze xylobiose to monomeric xylose. XynA was also shown to hydrolyze xylan present in Pinus radiata kraft pulp, indicating that it may be of use as an aid in pulp bleaching. The equivalent xylanase gene was also isolated from the related bacterium Dictyoglomus thermophilum, and DNA sequencing showed these genes to be identical, which, together with the 16S small-subunit rRNA gene sequencing data, indicates that Rt46B.1 and D. thermophilum are very closely related.  相似文献   

18.
A gene coding for a xylanase activity of alkalophilic Aeromonas sp. no. 212 (ATCC 31085) was cloned in Escherichia coli HB101 with pBR322. Plasmid pAX1 was isolated from transformants producing xylanase, and the xylanase gene was located in a 6.0 kb Hind III fragment. The pAX1-encoded xylanase activity in E. coli HB101 was about 80 times higher than that of xylanase L in alkalophilic Aeromonas sp. no. 212. About 40% of the enzyme activity was observed in the periplasmic space of E. coli HB101. The pAX1-encoded xylanase had the same enzymic properties as those of xylanase L produced by alkalophilic Aeromonas sp. no. 212, but its molecular weight was lower (135 000 vs 145 000, as estimated by SDS polyacrylamide gel electrophoresis).  相似文献   

19.
We have isolated and characterized a xylanolytic actinomycete strain (RM1) from the extremely alkaline bauxite residue obtained from National Aluminum Company Ltd., Damanjodi, India. The phenotypic features and complete sequence of 16S rRNA revealed that this strain belong the genus Kocuria and showed 98% sequence similarity with Kocuria aegyptia. The RM1 strain was able to grow at pH 10.5 in buffered and unbuffered media and utilize 40 different carbon substrates. The RM1 strain under optimal conditions produced extracellular xylanase at 311 U/ml. The xylanase produced by RM1 showed a wide range of temperature (30–85°C) and pH (4.5–9) tolerance by retaining 90% of its activity. This is the first report of isolation of actinomycetes, Kocuria sp., which produces high amount of xylanase, from bauxite residue and offers a new source of xylanase-producing strains.  相似文献   

20.
Shan ZQ  Zhou JG  Zhou YF  Yuan HY  Lv H 《遗传》2012,34(3):356-365
从青海盐碱湖土壤中筛选到25株产碱性木聚糖酶的菌株,其中编号为QH14的菌株产酶量达648.79U/mL,纯化后比活可达1148.56 U/mg。16 SrDNA鉴定表明菌株QH14属于短小芽孢杆菌,命名为Bacillus sp.QH14。从该菌株的基因组中克隆获得了碱性木聚糖酶编码基因XynQH14,并在大肠杆菌E.coliBL21(DE3)中获得重组表达。通过Ni-NTA亲和层析分离纯化后的重组QH14木聚糖酶比活达700.47 U/mg。该碱性木聚糖酶的酶促反应最适温度为60℃,最适pH为9.2;55℃处理1h仍保持50%的活力;在pH7.0~11条件下37℃处理酶液24 h后均保持80%以上的活力,且在pH11缓冲溶液中50℃处理24 h仍保持31.02%的酶活,显示了该碱性木聚糖酶较好的热稳定性和碱稳定,提示该碱性木聚糖酶在制浆造纸、纺织等行业的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号