首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant hormone ethylene regulates many aspects of growth, development and responses to the environment. The Arabidopsis ETHYLENE INSENSITIVE3 (EIN3) protein is a nuclear-localized component of the ethylene signal-transduction pathway with DNA-binding activity. Loss-of-function mutations in this protein result in ethylene insensitivity in Arabidopsis. To gain a better understanding of the ethylene signal-transduction pathway in tomato, we have identified three homologs of the Arabidopsis EIN3 gene (LeEILs). Each of these genes complemented the ein3-1 mutation in transgenic Arabidopsis, indicating that all are involved in ethylene signal transduction. Transgenic tomato plants with reduced expression of a single LeEIL gene did not exhibit significant changes in ethylene response; reduced expression of multiple tomato LeEIL genes was necessary to reduce ethylene sensitivity significantly. Reduced LeEIL expression affected all ethylene responses examined, including leaf epinasty, flower abscission, flower senescence and fruit ripening. Our results indicate that the LeEILs are functionally redundant and positive regulators of multiple ethylene responses throughout plant development.  相似文献   

2.
3.
Characterization of a novel tomato EIN3-like gene (LeEIL4)   总被引:5,自引:0,他引:5  
  相似文献   

4.
EIN2 (ethylene insensitive 2) is a very important component in the ethylene signal transduction pathway. Recently, the genomic DNA and full-length cDNA of LeEIN2 (tomato EIN2) have been isolated in our laboratory. To reveal the function of LeEIN2, transgenic tomato plants with reduced expression levels of LeEIN2 were produced. The fruit ripening and expressions of ripening-related genes encoding polygalacturonase and TomLoxB were inhibited in the LeEIN2-silenced transgenic plants compared to the wild-type Ailsa Craig. In the seedling ethylene response assay, the transgenic tomato plants with reduced LeEIN2 expression exhibited ethylene insensitivity. These results indicate that LeEIN2 plays a critical role in regulating tomato fruit ripening and is a positive regulator in ethylene signal transduction pathway.  相似文献   

5.
Ethylene is instrumental to climacteric fruit ripening and EIN3 BINDING F‐BOX (EBF) proteins have been assigned a central role in mediating ethylene responses by regulating EIN3/EIL degradation in Arabidopsis. However, the role and mode of action of tomato EBFs in ethylene‐dependent processes like fruit ripening remains unclear. Two novel EBF genes, SlEBF3 and SlEBF4, were identified in the tomato genome, and SlEBF3 displayed a ripening‐associated expression pattern suggesting its potential involvement in controlling ethylene response during fruit ripening. SlEBF3 downregulated tomato lines failed to show obvious ripening‐related phenotypes likely due to functional redundancy among SlEBF family members. By contrast, SlEBF3 overexpression lines exhibited pleiotropic ethylene‐related alterations, including inhibition of fruit ripening, attenuated triple‐response and delayed petal abscission. Yeast‐two‐hybrid system and bimolecular fluorescence complementation approaches indicated that SlEBF3 interacts with all known tomato SlEIL proteins and, consistently, total SlEIL protein levels were decreased in SlEBF3 overexpression fruits, supporting the idea that the reduced ethylene sensitivity and defects in fruit ripening are due to the SlEBF3‐mediated degradation of EIL proteins. Moreover, SlEBF3 expression is regulated by EIL1 via a feedback loop, which supposes its role in tuning ethylene signaling and responses. Overall, the study reveals the role of a novel EBF tomato gene in climacteric ripening, thus providing a new target for modulating fleshy fruit ripening.  相似文献   

6.
7.
8.
9.
The plant hormone ethylene regulates many aspects of growth and development. Loss-of-function mutations in ETHYLENE INSENSITIVE2 (EIN2) result in ethylene insensitivity in Arabidopsis, indicating an essential role of EIN2 in ethylene signaling. However, little is known about the role of EIN2 in species other than Arabidopsis. To gain a better understanding of EIN2, a petunia (Petunia x hybrida cv Mitchell Diploid [MD]) homolog of the Arabidopsis EIN2 gene (PhEIN2) was isolated, and the role of PhEIN2 was analyzed in a wide range of plant responses to ethylene, many that do not occur in Arabidopsis. PhEIN2 mRNA was present at varying levels in tissues examined, and the PhEIN2 expression decreased after ethylene treatment in petals. These results indicate that expression of PhEIN2 mRNA is spatially and temporally regulated in petunia during plant development. Transgenic petunia plants with reduced PhEIN2 expression were compared to wild-type MD and ethylene-insensitive petunia plants expressing the Arabidopsis etr1-1 gene for several physiological processes. Both PhEIN2 and etr1-1 transgenic plants exhibited significant delays in flower senescence and fruit ripening, inhibited adventitious root and seedling root hair formation, premature death, and increased hypocotyl length in seedling ethylene response assays compared to MD. Moderate or strong levels of reduction in ethylene sensitivity were achieved with expression of both etr1-1 and PhEIN2 transgenes, as measured by downstream expression of PhEIL1. These results demonstrate that PhEIN2 mediates ethylene signals in a wide range of physiological processes and also indicate the central role of EIN2 in ethylene signal transduction.  相似文献   

10.
气体植物激素乙烯在植物生长发育及应对胁迫的防御反应中起重要调控作用.通过20多年的研究,利用模式植物拟南芥,勾画出一条自内质网膜受体至细胞核内转录因子的线性乙烯信号转导通路.本文概述了研究乙烯信号转导的方法及乙烯信号转导的基本过程;阐述了最新发现的乙烯信号从内质网膜传递到细胞核的分子机制,即原本定位于内质网膜上的EIN2蛋白其C端被剪切之后进入细胞核,然后通过抑制EBF1/2而稳定转录因子EIN3/EIL1;根据最近多个小组报道EIN3/EIL1直接调控除乙烯响应基因之外的其他生物学过程相关基因,提出了EIN3/EIL1可以作为网络节点整合多条信号通路的新观点;通过分析不同信号通路调控EIN3/EIL1的方式,发现不仅EIN3/EIL1的蛋白稳定性受到调控,而且其转录活性还受到诸如JAZ,DELLA等转录调节因子的调控.本文展望了未来乙烯信号转导通路的研究方向与研究热点.  相似文献   

11.
12.
It has previously been shown that jasmonic acid affects the ethylene signaling pathway. EIN2 is a central component of ethylene signaling that is downstream of the receptors. EIN2 has previously been shown to be required for ethylene responses. We found that reducing jasmonic acid levels, either mutationally or chemically, caused ein2 ethylene-insensitive mutants to become ethylene responsive. This effect was not seen with the ethylene-insensitive etr1-1 mutants that affect receptor function. Based upon these results, we propose a model where jasmonic acid is inhibiting ethylene signal transduction down-stream of the ethylene receptors. This may involve an EIN2-independent pathway.  相似文献   

13.
14.
The ethylene signaling pathway: new insights   总被引:18,自引:0,他引:18  
  相似文献   

15.
16.
17.
18.
19.
Loss-of-function ethylene insensitive 2 (EIN2) mutations showed ethylene insensitivity in Arabidopsis, which indicated an essential role of EIN2 in ethylene signaling. However, the function of EIN2 in fruit ripening has not been investigated. To gain a better understanding of EIN2, the temporal regulation of LeEIN2 expres- sion during tomato fruit development was analyzed. The expression of LeEIN2 was constant at different stages of fruit development, and was not regulated by ethylene. Moreover, LeEIN2-silenced tomato fruits were developed using a virus-induced gene silencing fruit system to study the role of LeEIN2 in tomato fruit ripening. Silenced fruits had a delay in fruit development and ripening, related to greatly descended expression of ethylene-related and ripening-related genes in comparison with those of control fruits. These results suggested LeEIN2 positively mediated ethylene signals during tomato development. In addition, there were fewer seeds and Iocules in the silenced fruit than those in the control fruit, like the phenotype of parthenocarpic tomato fruit. The content of auxin and the expression of auxin-regulated gene were declined in silenced fruit, which indicated that EIN2 might be important for crosstalk between ethylene and auxin hormones.  相似文献   

20.
植物乙烯信号转导研究进展   总被引:11,自引:0,他引:11  
过去10年,对模式植物拟南芥的分子遗传学研究建立了植物乙烯信号转导线性模型.乙烯结合到受体上,经一条MAPK级联反应和转录级联途径将信号转导而产生乙烯反应.拟南芥乙烯受体家族由5个成员构成,ETR1、ERS1、ETR2、ERS2和EIN4.乙烯受体包括三个结构域:乙烯结合结构域、组氨酸激酶结构域和反应调控结构域.乙烯受体定位于内质网,与CTR1协同负调控乙烯反应.ENI2、EIN3/EIL、ERF1依次位于CTR1下游,正调控乙烯反应.EIN3属于转录激活因子调控蛋白家族,受转录后调控.乙烯稳定EIN3结构,EBF1/EBF2促进EIN3分解.ERF1是转录调控因子家族成员之一,是EIN3/EIL的直接作用目标.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号