首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein ubiquitination is a posttranslational regulatory process essential for plant growth and interaction with the environment. E3 ligases, to which the seven in absentia (SINA) proteins belong, determine the specificity by selecting the target proteins for ubiquitination. SINA proteins are found in animals as well as in plants, and a small gene family with highly related members has been identified in the genome of rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), Medicago truncatula, and poplar (Populus trichocarpa). To acquire insight into the function of SINA proteins in nodulation, a dominant negative form of the Arabidopsis SINAT5 was ectopically expressed in the model legume M. truncatula. After rhizobial inoculation of the 35S:SINAT5DN transgenic plants, fewer nodules were formed than in control plants, and most nodules remained small and white, a sign of impaired symbiosis. Defects in rhizobial infection and symbiosome formation were observed by extensive microscopic analysis. Besides the nodulation phenotype, transgenic plants were affected in shoot growth, leaf size, and lateral root number. This work illustrates a function for SINA E3 ligases in a broad spectrum of plant developmental processes, including nodulation.  相似文献   

2.
Phylogenetic and expression analysis of ZnF-AN1 genes in plants   总被引:5,自引:0,他引:5  
Jin Y  Wang M  Fu J  Xuan N  Zhu Y  Lian Y  Jia Z  Zheng J  Wang G 《Genomics》2007,90(2):265-275
In plants, ZnF-AN1 genes are part of a multigene family with 13 members in Arabidopsis thaliana, 19 members in Populus trichocarpa, 17 members in Oryza sativa, at least 11 members in Zea mays, and 2 members in Chlamydomonas reinhardtii. All ZnF-AN1 genes contain the ZnF-AN1 domain. According to the phylogenetic analysis of the ZnF-AN1 domain, we divided plant ZnF-AN1 genes into two types. The coding sequences of most type I members do not possess any introns, while most type II members do possess intron(s). Through Northern blot analysis of maize members and digital Northern analysis of Arabidopsis members, we found that most ZnF-AN1 genes are involved in responses to abiotic stresses. The evolutionary analysis indicated that the expansion rate of type I was higher than that of type II. After expansion, some ZnF-AN1 genes may have gained new functions, some may have lost their functions, and some were specialized to perform their functions in stress-specific or tissue-specific modes. In addition, we propose an evolutionary model of type II ZnF-AN1 genes in plants.  相似文献   

3.
Small auxin-up RNAs(SAURs)are the early auxin-responsive genes represented by a large multigene family in plants.Here,we identified 79 SAUR gene family members from maize(Zea mays subsp.mays)by a reiterative database search and manual annotation.Phylogenetic analysis indicated that the SAUR proteins from Arabidopsis,rice,sorghum,and maize had divided into 16 groups.These genes were non-randomly distributed across the maize chromosomes,and segmental duplication and tandem duplication contributed to the expansion of the maize SAUR gene family.Synteny analysis established orthology relationships and functional linkages between SAUR genes in maize and sorghum genomes.We also found that the auxin-responsive elements were conserved in the upstream sequences of maize SAUR members.Selection analyses identified some significant site-specific constraints acted on most SAUR paralogs.Expression profiles based on microarray data have provided insights into the possible functional divergence among members of the SAUR gene family.Quantitative real-time PCR analysis indicated that some of the 10 randomly selected ZmSAUR genes could be induced at least in maize shoot or root tissue tested.The results reveal a comprehensive overview of the maize SAUR gene family and may pave the way for deciphering their function during plant development.  相似文献   

4.
Small auxin-up RNAs (.SAURs) are the early auxin- responsive genes represented by a large multigene family in plants. Here, we identified 79 SAUR gene family members from maize (Zea mays subsp, mays) by a reiterative database search and manual annotation. Phylogenetic analysis indicated that the SAUR proteins from Arabidopsis, rice, sorghum, and maize had divided into 16 groups. These genes were non-randomly distributed across the maize chromosomes, and segmental duplication and tandem duplication contributed to the expansion of the maize .SAUR gene family. Synteny analysis established ortholos~J relationships and functional linkages between SAUR genes in maize and sorghum genomes. We also found that the auxin-responsive elements were conserved in the upstream sequences of maize SAUR members. Selection analyses identified some significant site-specific constraints acted on most SAUR paralogs. Expression profiles based on microarray data have provided insights into the possible functional divergence among members of the .SAUR gene family. Quantitative real-time PCR analysis indicated that some of the 10 randomly selected ZmSAUR genes could be induced at least in maize shoot or root tissue tested. The results reveal a comprehensive overview of the maize .SAUR gene family and may pave the way for deciphering their function during pJant development.  相似文献   

5.
ABC1K atypical kinases in plants: filling the organellar kinase void   总被引:1,自引:0,他引:1  
Surprisingly few protein kinases have been demonstrated in chloroplasts or mitochondria. Here, we discuss the activity of bc(1) complex kinase (ABC1K) protein family, which we suggest locate in mitochondria and plastids, thus filling the kinase void. The ABC1Ks are atypical protein kinases and their ancestral function is the regulation of quinone synthesis. ABC1Ks have proliferated from one or two members in non-photosynthetic organisms to more than 16 members in algae and higher plants. In this review, we reconstruct the evolutionary history of the ABC1K family, provide a functional domain analysis for angiosperms and a nomenclature for ABC1Ks in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa) and maize (Zea mays). Finally, we hypothesize that targets of ABC1Ks include enzymes of prenyl-lipid metabolism as well as components of the organellar gene expression machineries.  相似文献   

6.
7.
Lectin receptor-like kinases (Lectin RLKs) are a large family of receptor-like kinases with an extracellular legume lectin-like domain. There are approximately 45 such receptor kinases in Arabidopsis thaliana. Surprisingly, although receptor-like kinases in general are well investigated in Arabidopsis, relatively little is known about the functions of members of the Lectin RLK family. A number of studies implicated members of this family in various functions, such as disease resistance, stress responses, hormone signaling, and legume-rhizobium symbiosis. Our current work demonstrated that mutation in one Lectin RLK gene led to male sterility in Arabidopsis. The sterility was due to defects in pollen development. Pollen development proceeded normally in the mutant until anther stage 8. After that, all pollen grains deformed and collapsed. Mature pollen grains were much smaller than wild-type pollen grains, glued together, and totally collapsed. Therefore, the mutant was named sgc, standing for small, glued-together, and collapsed pollen mutant. The mutant phenotype appeared to be caused by an unidentified sporophytic defect due to the mutation. As revealed by analysis of the promoter-GUS transgenic plants and the gene expression analysis using RT-PCR, the gene showed an interesting temporal and spatial expression pattern: it had no or a low expression in young flowers (roughly before anther stage 6), reached a maximum level around stages 6-7, and then declined gradually to a very low level in young siliques. No expression was detected in microspores or pollen. Together, our data demonstrated that SGC Lectin RLK plays a critical role in pollen development.  相似文献   

8.
9.
张亮生  马成荣  戢茜  王翼飞 《遗传》2009,31(2):186-198
ET(Su(var), Enhancer of zeste (E(z)), and Trithorax)结构域基因家族是一组含有保守SET结构域的蛋白的统称, 它们参与蛋白甲基化, 影响染色体结构, 并且调控基因表达, 在植物发育中起着重要的作用。分析拟南芥和水稻中SET结构域基因家族进化关系, 对研究这一基因家族中各成员的功能有着重要的意义。我们系统地鉴定了47个拟南芥(Arabidopsis thaliana)和43个水稻(Orysa sativa japonica cultivar Nipponbare)的SET结构域基因, 染色体定位和基因复制分析表明SET结构域基因扩增是由片段复制和反转录引起的, 根据这些结构域差异和系统发育分析把拟南芥和水稻的SET结构域基因划分成5个亚家族。通过分析SET结构域基因家族在拟南芥和水稻各个发育阶段的表达谱, 发现SET结构域基因绝大部分至少在一个组织中表达; 大部分在花和花粉中高表达; 一些SET结构域基因在某些组织中有特异的表达模式, 表明与组织发育有密切的关系。在拟南芥和水稻中分别找到了4个差异表达基因。拟南芥4个差异基因都在花粉管高表达, 水稻4个差异基因有3个在雄性花蕊中高表达, 另一个在幼穗中高表达。  相似文献   

10.
Hsieh MH  Goodman HM 《Plant physiology》2002,130(4):1797-1806
In bacteria, the regulatory ACT domains serve as amino acid-binding sites in some feedback-regulated amino acid metabolic enzymes. We have identified a novel type of ACT domain-containing protein family in Arabidopsis whose members contain ACT domain repeats (the "ACR" protein family). There are at least eight ACR genes located on each of the five chromosomes in the Arabidopsis genome. Gene structure comparisons indicate that the ACR gene family may have arisen by gene duplications. Northern-blot analysis indicates that each member of the ACR gene family has a distinct expression pattern in various organs from 6-week-old Arabidopsis. Moreover, analyses of an ACR3 promoter-beta-glucuronidase (GUS) fusion in transgenic Arabidopsis revealed that the GUS activity formed a gradient in the developing leaves and sepals, whereas low or no GUS activity was detected in the basal regions. In 2-week-old Arabidopsis seedlings grown in tissue culture, the expression of the ACR gene family is differentially regulated by plant hormones, salt stress, cold stress, and light/dark treatment. The steady-state levels of ACR8 mRNA are dramatically increased by treatment with abscisic acid or salt. Levels of ACR3 and ACR4 mRNA are increased by treatment with benzyladenine. The amino acid sequences of Arabidopsis ACR proteins are most similar in the ACT domains to the bacterial sensor protein GlnD. The ACR proteins may function as novel regulatory or sensor proteins in plants.  相似文献   

11.
12.
13.
14.
PHO2(编码一个泛素结合酶E2)作为磷高亲和转运体PHT1的负调控子,在维持植物体内磷的动态平衡中发挥重要作用。该研究以拟南芥和水稻中的PHO2为基础,从玉米自交系B73基因组中鉴定出9个ZmPHO2基因家族成员,在系统进化关系上将其分为3类。在玉米自交系178中克隆了上述9个基因的CDS全长序列,保守结构域分析发现,ZmPHO2蛋白质序列中均有1个由约130个氨基酸组成的泛素结合酶E2催化结构域(UBCc),其中包含1个重要的保守氨基酸(半胱氨酸)。实时荧光定量结果表明,低磷胁迫处理后,所有ZmPHO2基因均有表达,并呈现不同的表达模式,主要表现为叶与根之间的组织差异和玉米自交系178与9782之间的基因型差异,而在同一组织多数基因间的表达差异不明显。其中,ZmPHO2;H2在自交系9782的根中持续下调表达,但在叶中持续上调表达,表明ZmPHO2;H2可能参与调控磷素在叶与根之间的运输,以维持地上部分和地下部分磷的平衡。  相似文献   

15.
The receptors for the immunosuppression drugs FK506 and rapamycin are called FKBPs (FK506-binding proteins). FKBPs comprise a large family; they are found in many species, including bacteria, fungi, animals, and plants. As a class of peptidyl-prolyl cis-trans isomerase enzymes, the FKBP genes have been the focus of recent studies on plant stress tolerance and immunology. We identified and analyzed gene families encoding these proteins in maize using computational and molecular biology approaches. Thirty genes were found to encode putative FKBPs according to their FK506-binding domain. The FKBP genes can be classified into single domain and multiple domain members based on the number of the domains. By analysis of the physical locations, the 30 FKBP genes were found to be widely distributed on 10 chromosomes. After analysis of the FKBP phylogenetic tree in the maize genome, we found that the 30 genes revealed two major clades. Gene duplication played a major role in the evolution of FKBP genes, which suggests that the FKBP genes in maize have a pattern significantly different from that of these genes in rice. Based on semi-quantitative RT-PCR, we found that the 30 FKBPs were expressed differently in various tissues in maize, which suggests that FKBP genes play different roles in each tissue. Several FKBPs were expressed at higher levels in roots, indicating that these genes in maize may have similar or overlapping functions.  相似文献   

16.
17.
Kong F  Wang J  Cheng L  Liu S  Wu J  Peng Z  Lu G 《Gene》2012,499(1):108-120
  相似文献   

18.
We describe a novel family of putative efflux transporters (PET) found in bacteria, yeast and plants. None of the members of the PET family has been functionally characterized. The bacterial and yeast proteins display a duplicated internal repeat element consisting of an N-terminal hydrophobic sequence of about 170 residues, exhibiting six putative transmembrane alpha-helical spanners (TMSs), followed by a large (230 residue), C-terminal, hydrophilic, cytoplasmic domain. The plant proteins exhibit only one such unit, but they have a larger C-terminal cytoplasmic domain. Arabidopsis thaliana encodes at least seven paralogues of the PET family. The gram-negative bacterial proteins are sometimes encoded by genes that are found in operons that also contain genes that encode membrane fusion proteins. This fact strongly suggests that PET family proteins are efflux pumps. The sequence, topological and phylogenetic characteristics of these proteins as well as the operonic structures of their encoded genes when relevant are described.  相似文献   

19.
Histone proteins play a central role in chromatin packaging, and modification of histones is associated with chromatin accessibility. SET domain [Su(var)3-9, Enhancer-of-zeste, Trithorax] proteins are one class of proteins that have been implicated in regulating gene expression through histone methylation. The relationships of 22 SET domain proteins from maize (Zea mays) and 32 SET domain proteins from Arabidopsis were evaluated by phylogenetic analysis and domain organization. Our analysis reveals five classes of SET domain proteins in plants that can be further divided into 19 orthology groups. In some cases, such as the Enhancer of zeste-like and trithorax-like proteins, plants and animals contain homologous proteins with a similar organization of domains outside of the SET domain. However, a majority of plant SET domain proteins do not have an animal homolog with similar domain organization, suggesting that plants have unique mechanisms to establish and maintain chromatin states. Although the domains present in plant and animal SET domain proteins often differ, the domains found in the plant proteins have been generally implicated in protein-protein interactions, indicating that most SET domain proteins operate in complexes. Combined analysis of the maize and Arabidopsis SET domain proteins reveals that duplication of SET domain proteins in plants is extensive and has occurred via multiple mechanisms that preceded the divergence of monocots and dicots.  相似文献   

20.
Low molecular weight secreted peptides have recently been shown to affect multiple aspects of plant growth, development, and defense responses.Here, we performed stepwise BLAST filtering to identify unannotated peptides from the Arabidopsis thaliana protein database and uncovered a novel secreted peptide family, secreted transmembrane peptides(STMPs). These low molecular weight peptides, which consist of an N-terminal signal peptide and a transmembrane domain, were primarily localized to extracellular compartments but were also detected in the endomembrane system of the secretory pathway, including the endoplasmic reticulum and Golgi. Comprehensive bioinformatics analysis identified 10 STMP family members that are specific to the Brassicaceae family. Brassicaceae plants showed dramatically inhibited root growth uponexposure to chemically synthesized STMP1 and STMP2.Arabidopsis overexpressing STMP1, 2, 4, 6, or 10 exhibited severely arrested growth, suggesting that STMPs are involved in regulating plant growth and development. In addition, in vitro bioassays demonstrated that STMP1,STMP2, and STMP10 have antibacterial effects against Pseudomonas syringae pv. tomato DC3000, Ralstonia solanacearum, Bacillus subtilis, and Agrobacterium tumefaciens, demonstrating that STMPs are antimicrobial peptides. These findings suggest that STMP family members play important roles in various developmental events and pathogen defense responses in Brassicaceae plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号