首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine seminal ribonuclease, a homodimeric enzyme joined covalently by two interchain disulphide bonds, is an equilibrium mixture of two conformational isomers, MxM and M=M. The major form, MxM, whose crystal structure has been previously determined at 1.9 A resolution, presents the swapping of the N-terminal segments (residues 1-15) and composite active sites formed by residues of different chains. The three-dimensional domain swapping does not occur in the M=M form. The different fold of each N-terminal tail is directed by the hinge loop (residue 16-22) connecting the swapping domain to the body of the protein. Reduction and alkylation of interchain disulphide bridges produce a monomeric derivative and a noncovalent swapped dimer, which are both active. The free and nucleotide-bound forms of the monomer have been crystallized at an alkaline pH and refined at 1.45 and 1.65 A resolution, respectively. In both cases, the N-terminal fragment is folded on the main body of the protein to produce an intact active site and a chain architecture very similar to that of bovine pancreatic ribonuclease. In this new fold of the seminal chain, the hinge loop is disordered. Despite the difference between the tertiary structure of the monomer and that of the chains in the MxM form, the active sites of the two enzymes are virtually indistinguishable. Furthermore, the structure of the liganded enzyme represents the first example of a ribonuclease complex studied at an alkaline pH and provides new information on the binding of a nucleotide when the catalytic histidines are deprotonated.  相似文献   

2.
The understanding of protein dynamics is one of the major goals of structural biology. A direct link between protein dynamics and function has been provided by x-ray studies performed on ribonuclease A (RNase A) (B. F. Rasmussen et al., Nature, 1992, Vol. 357, pp. 423-424; L. Vitagliano et al., Proteins: Structure, Function, and Genetics, 2002, Vol. 46, pp. 97-104). Here we report a 3 ns molecular dynamics simulation of RNase A in water aimed at characterizing the dynamical behavior of the enzyme. The analysis of local and global motions provides interesting insight on the dynamics/function relationship of RNase A. In agreement with previous crystallographic reports, the present study confirms that the RNase A active site is constituted by rigid (His12, Asn44, Thr45) and flexible (Lys41, Asp83, His119, Asp121) residues. The analysis of the global motions, performed using essential dynamics, shows that the two beta-sheet regions of RNase A move coherently in opposite directions, thus modifying solvent accessibility of the active site, and that the mixed alpha/3(10)-helix (residues 50-60) behaves as a mechanical hinge during the breathing motion of the protein. These data demonstrate that this motion, essential for RNase A substrate binding and release, is an intrinsic dynamical property of the ligand-free enzyme.  相似文献   

3.
Bovine seminal ribonuclease (BS-RNase) is a unique member of the pancreatic-like ribonuclease superfamily. The native enzyme is a mixture of two dimeric forms with distinct structural features. The most abundant form is characterized by the swapping of N-terminal fragments. In this paper, the crystal structure of the complex between the swapping dimer and uridylyl(2',5')adenosine is reported at 2.06 A resolution. The refined model has a crystallographic R-factor of 0.184 and good stereochemistry. The quality of the electron density maps enables the structure of both the inhibitor and active site residues to be unambiguously determined. The overall architecture of the active site is similar to that of RNase A. The dinucleotide adopts an extended conformation with the pyrimidine and purine base interacting with Thr45 and Asn71, respectively. Several residues (Gln11, His12, Lys41, His119, and Phe120) bind the oxygens of the phosphate group. The structural similarity of the active sites of BS-RNase and RNase A includes some specific water molecules believed to be relevant to catalytic activity. Upon binding of the dinucleotide, small but significant modifications of the tertiary and quaternary structure of the protein are observed. The ensuing correlation of these modifications with the catalytic activity of the enzyme is discussed.  相似文献   

4.
Despite the increasing number of successful determinations of complex protein structures the understanding of their dynamics properties is still rather limited. Using X-ray crystallography, we demonstrate that ribonuclease A (RNase A) undergoes significant domain motions upon ligand binding. In particular, when cytidine 2'-monophosphate binds to RNase A, the structure of the enzyme becomes more compact. Interestingly, our data also show that these structural alterations are fully reversible in the crystal state. These findings provide structural bases for the dynamic behavior of RNase A in the binding of the substrate shown by Petsko and coworkers (Rasmussen et al. Nature 1992;357:423-424). These subtle domain motions may assume functional relevance for more complex system and may play a significant role in the cooperativity of oligomeric enzymes.  相似文献   

5.
In an earlier study, we showed that two‐domain segment‐swapped proteins can evolve by domain swapping and fusion, resulting in a protein with two linkers connecting its domains. We proposed that a potential evolutionary advantage of this topology may be the restriction of interdomain motions, which may facilitate domain closure by a hinge‐like movement, crucial for the function of many enzymes. Here, we test this hypothesis computationally on uroporphyrinogen III synthase, a two‐domain segment‐swapped enzyme essential in porphyrin metabolism. To compare the interdomain flexibility between the wild‐type, segment‐swapped enzyme (having two interdomain linkers) and circular permutants of the same enzyme having only one interdomain linker, we performed geometric and molecular dynamics simulations for these species in their ligand‐free and ligand‐bound forms. We find that in the ligand‐free form, interdomain motions in the wild‐type enzyme are significantly more restricted than they would be with only one interdomain linker, while the flexibility difference is negligible in the ligand‐bound form. We also estimated the entropy costs of ligand binding associated with the interdomain motions, and find that the change in domain connectivity due to segment swapping results in a reduction of this entropy cost, corresponding to ~20% of the total ligand binding free energy. In addition, the restriction of interdomain motions may also help the functional domain‐closure motion required for catalysis. This suggests that the evolution of the segment‐swapped topology facilitated the evolution of enzyme function for this protein by influencing its dynamic properties. Proteins 2016; 85:46–53. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Cozza G  Moro S  Gotte G 《Biopolymers》2008,89(1):26-39
By lyophilization from 40% acetic acid solutions, bovine pancreatic ribonuclease A forms several three-dimensional (3D) domain-swapped oligomers: dimers, trimers, tetramers, pentamers, hexamers, and traces of high-order oligomers, purifiable by cation-exchange chromatography. Each oligomeric species consists of at least two conformers displaying different basicity density, and/or exposure of positive charges. The structures of the two dimers and one trimer have been solved. Plausible models have been proposed for a second RNase A trimer and four tetramers, but not all the models are certainly assignable to the tetramers purified. Further studies have also been made on the pentameric and hexameric species, again without reaching structurally clear-cut results. This work is focused on the detailed modeling of the tetrameric RNase A species, using four different approaches to possibly clarify unknown structural aspects. The results obtained do not confirm the validity of one tetrameric model previously proposed, but allow the proposal of a novel tetrameric structure displaying new interfaces that are absent in the other known conformers. New details concerning other tetrameric structures are also described. RNase A multimers larger than tetramers, i.e., pentamers, hexamers, octamers, nonamers, up to dodecamers, are also modeled, with the proposal of novel domain-swapped structures, and the confirmation of what had previously been inferred. Finally, the propensity of RNase A to possibly form high-order supramolecular multimers is analyzed starting from the large number of domain-swapped RNase A conformers modeled.  相似文献   

7.
Guanine-containing mono- and dinucleotides bind to the active site of ribonuclease A in a nonproductive mode (retro-binding) (Aguilar CF, Thomas PJ, Mills A, Moss DS, Palmer RA. 1992. J Mol Biol 224:265-267). Guanine binds to the highly specific pyrimidine site by forming hydrogen bonds with Thr45 and with the sulfate anion located in the P1 site. To investigate the influence of the anion present in the P1 site on retro-binding, we determined the structure of two new complexes of RNase A with uridylyl(2',5')guanosine obtained by soaking two different forms of pre-grown RNase A crystals. In one case, RNase A was crystallized without removing the sulfate anion strongly bound to the active site; in the other, the protein was first equilibrated with a basic solution to displace the anion from the P1 site. The X-ray structures of the complexes with and without sulfate in P1 were refined using diffraction data up to 1.8 A (R-factor 0.192) and 2.0 A (R-factor 0.178), respectively. The binding mode of the substrate analogue to the protein differs markedly in the two complexes. When the sulfate is located in P1, we observe retro-binding; whereas when the anion is removed from the active site, the uridine is productively bound at the B1 site. In the productive complex, the electron density is very well defined for the uridine moiety, whereas the downstream guanine is disordered. This finding indicates that the interactions of guanine in the B2 site are rather weak and that this site is essentially adenine preferring. In this crystal form, there are two molecules per asymmetric unit, and due to crystal packing, only the active site of one molecule is accessible to the ligand. Thus, in the same crystal we have a ligand-bound and a ligand-free RNase A molecule. The comparison of these two structures furnishes a detailed and reliable picture of the structural alterations induced by the binding of the substrate. These results provide structural information to support the hypotheses on the role of RNase A active site residues that have recently emerged from site-directed mutagenesis studies.  相似文献   

8.
Primary (AL) amyloidosis results from the pathologic deposition of monoclonal light chains as amyloid fibrils. Studies of recombinant-derived variable region (VL) fragments of these proteins have shown an inverse relationship between thermodynamic stability and fibrillogenic potential. Further, ionic interactions within the VL domain were predicted to influence the kinetics of light chain fibrillogenicity, as evidenced from our analyses of a relatively stable Vlambda6 protein (Jto) with a long range electrostatic interaction between Asp and Arg side chains at position 29 and 68, respectively, and an unstable, highly fibrillogenic Vlambda6 protein (Wil) that had neutral amino acids at these locations. To test this hypothesis, we have generated two Jto-related mutants designed to disrupt the interaction between Asp 29 and Arg 68 (JtoD29A and JtoR68S). Although the thermodynamic stabilities of unfolding for these two molecules were identical, they exhibited very different kinetics of fibril formation: the rate of JtoD29A fibrillogenesis was slow and comparable to the parent molecule, whereas that of JtoR68S was significantly faster. High-resolution X-ray diffraction analyses of crystals prepared from the two mutants having the same space group and unit cell dimensions revealed no significant main-chain conformational changes. However, several notable side-chain alterations were observed in JtoR68S, as compared with JtoD29A, that resulted in the solvent exposure of a greater hydrophobic surface and modifications in the electrostatic potential surface. We posit that these differences contributed to the enhanced fibrillogenic potential of the Arg 68 mutant, since both Jto mutants lacked the intrachain ionic interaction and were equivalently unstable. The information gleaned from our studies has provided insight into structural parameters that in addition to overall thermodynamic stability, contribute to the fibril forming propensity of immunoglobulin light chains.  相似文献   

9.
Campbell JD  Sansom MS 《FEBS letters》2005,579(19):4193-4199
Transport by ABC proteins requires a cycle of ATP-driven conformational changes of the nucleotide binding domains (NBDs). We compare three molecular dynamics simulations of dimeric MJ0796: with ATP was present at both NBDs; with ATP at one NBD but ADP at the other; and without any bound ATP. In the simulation with ATP present at both NBDs, the dimeric protein interacts with the nucleotides in a symmetrical manner. However, if ADP is present at one binding site then both NBD-NBD and protein-ATP interactions are enhanced at the opposite site.  相似文献   

10.
11.
Pharmacological analysis of ligand binding to the beta-adrenergic receptor (beta AR) has revealed the existence of two distinct receptor subtypes (beta 1 and beta 2) which are the products of different genes. The predicted amino acid sequences of the beta 1 and beta 2 receptors differ by 48%. To identify the regions of the proteins responsible for determining receptor subtype, chimeras were constructed from domains of the human beta 1 and hamster beta 2 receptors. Analysis of the ligand-binding characteristics of these hybrid receptors revealed that residues in the middle portion of the beta AR sequence, particularly around transmembrane regions 4 and 5, contribute to the subtype specific binding of agonists. Smaller molecular replacements of regions of the hamster beta 2 AR with the analogous regions from the avian beta 1 AR, however, failed to identify any single residue substitution capable of altering the subtype specificity of the receptor. These data indicate that, whereas sequences around transmembrane regions 4 and 5 may contribute to conformations which influence the ligand-binding properties of the receptor, the subtype-specific differences in amine-substituted agonist binding cannot be attributed to a single molecular interaction between the ligand and any amino acid residue which is divergent between the beta 1 and beta 2 receptors.  相似文献   

12.
13.
Jones PM  George AM 《Proteins》2009,75(2):387-396
ABC transporters are ubiquitous, ATP-dependent transmembrane pumps. The mechanism by which ATP hydrolysis in the nucleotide-binding domain (NBD) effects conformational changes in the transmembrane domain that lead to allocrite translocation remains largely unknown. A possible aspect of this mechanism was suggested by previous molecular dynamics simulations of the MJ0796 NBD dimer, which revealed a novel, nucleotide-dependent intrasubunit conformational change involving the relative rotation of the helical and catalytic subdomains. Here, we find that in four of five simulations of the ADP/ATP-bound dimer, the relative rotation of the helical and catalytic subdomains in the ADP-bound monomer results in opening of the ADP-bound active site, probably sufficient or close to sufficient to allow nucleotide exchange. We also observe that in all five simulations of the ADP/ATP-bound dimer, the intimate contact of the LSGGQ signature sequence with the ATP gamma-phosphate is weakened by the intrasubunit conformational change within the ADP-bound monomer. We discuss how these results support a constant contact model for the function of the NBD dimer in contrast to switch models, in which the NBDs are proposed to fully disassociate during the catalytic cycle.  相似文献   

14.
Cappello V  Tramontano A  Koch U 《Proteins》2002,47(2):106-115
Comparative analysis of protein binding sites for similar ligands yields information about conserved interactions, relevant for ligand affinity, and variable interactions, which are important for specificity. The pattern of variability can indicate new targets for a pharmacologically validated class of compounds binding to a similar site. A particularly vast group of therapeutically interesting proteins using the same or similar substrates are those that bind adenine-containing ligands. Drug development is focusing on compounds occupying the adenine-binding site and their specificity is an issue of paramount importance. We use a simple scheme to characterize and classify the adenine-binding sites in terms of their intermolecular interactions, and show that this classification does not necessarily correspond to protein classifications based on either sequence or structural similarity. We find that only a limited number of the different hydrogen bond patterns possible for adenine-binding is used, which can be utilized as an effective classification scheme. Closely related protein families usually share similar hydrogen patterns, whereas non-polar interactions are less well conserved. Our classification scheme can be used to select groups of proteins with a similar ligand-binding site, thus facilitating the definition of the properties that can be exploited to design specific inhibitors.  相似文献   

15.
16.
Shigella dysentriae and other Gram‐negative human pathogens are able to use iron from heme bound to hemoglobin for growing. We solved at 2.6 Å resolution the 3D structure of the TonB‐dependent heme/hemoglobin outer membrane receptor ShuA from S. dysenteriae. ShuA binds to hemoglobin and transports heme across the outer membrane. The structure consists of a C‐terminal domain that folds into a 22‐stranded transmembrane β‐barrel, which is filled by the N‐terminal plug domain. One distal histidine ligand of heme is located at the apex of the plug, exposed to the solvent. His86 is situated 9.86 Å apart from His420, the second histidine involved in the heme binding. His420 is in the extracellular loop L7. The heme coordination by His86 and His420 involves conformational changes. The comparisons with the hemophore receptor HasR of Serratia marcescens bound to HasA‐Heme suggest an extracellular induced fit mechanism for the heme binding. The loop L7 contains hydrophobic residues which could interact with the hydrophobic porphyring ring of heme. The energy required for the transport by ShuA is derived from the proton motive force after interactions between the periplasmic N‐terminal TonB‐box of ShuA and the inner membrane protein, TonB. In ShuA, the TonB‐box is buried and cannot interact with TonB. The structural comparisons with HasR suggest its conformational change upon the heme binding for interacting with TonB. The signaling of the heme binding could involve a hydrogen bond network going from His86 to the TonB‐box. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The multiconformer nature of solution nuclear magnetic resonance (NMR) structures of proteins results from the effects of intramolecular dynamics, spin diffusion and an uneven distribution of structural restraints throughout the molecule. A delineation of the former from the latter two contributions is attempted in this work for an ensemble of 15 NMR structures of the protein Escherichia coli ribonuclease HI (RNase HI). Exploration of the dynamic information content of the NMR ensemble is carried out through correlation with data from two crystal structures and a 1.7‐ns molecular dynamics (MD) trajectory of RNase HI in explicit solvent. Assessment of the consistency of the crystal and mean MD structures with nuclear Overhauser effect (NOE) data showed that the NMR ensemble is overall more compatible with the high‐resolution (1.48 Å) crystal structure than with either the lower‐resolution (2.05 Å) crystal structure or the MD simulation. Furthermore, the NMR ensemble is found to span more conformational space than the MD simulation for both the backbone and the sidechains of RNase HI. Nonetheless, the backbone conformational variability of both the NMR ensemble and the simulation is especially consistent with NMR relaxation measurements of two loop regions that are putative sites of substrate recognition. Plausible side‐chain dynamic information is extracted from the NMR ensemble on the basis of (i) rotamericity and syn‐pentane character of variable torsion angles, (ii) comparison of the magnitude of atomic mean‐square fluctuations (msf) with those deduced from crystallographic thermal factors, and (iii) comparison of torsion angle conformational behavior in the NMR ensemble and the simulation. Several heterogeneous torsion angles, while adopting non‐rotameric/syn‐pentane conformations in the NMR ensemble, exist in a unique conformation in the simulation and display low X‐ray thermal factors. These torsions are identified as sites whose variability is likely to be an artifact of the NMR structure determination procedure. A number of other torsions show a close correspondence between the conformations sampled in the NMR and MD ensembles, as well as significant correlations among crystallographic thermal factors and atomic msf calculated from the NMR ensemble and the simulation. These results indicate that a significant amount of dynamic information is contained in the NMR ensemble. The relevance of the present findings for the biological function of RNase HI, protein recognition studies, and previous investigations of the motional content of protein NMR structures are discussed. Proteins 1999;36:87–110. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
Punta M  Cavalli A  Torre V  Carloni P 《Proteins》2003,52(3):332-338
A dimeric model of the cyclic nucleotide-binding domain of the all-alpha homomeric cyclic nucleotide-gated channel from bovine retinal rod is constructed. The model, based on the structure of the fairly homologous catabolite gene activator protein (Weber and Steitz, J Mol Biol 1987;198:311-326), is obtained by use of comparative modeling and molecular dynamics simulations. Our model provides a structural basis for the experimentally measured difference in activity between cAMP and cGMP, as well as the different solvent accessibilities of GLY597 in the complex with cGMP, with cAMP and in the protein in free state. In addition, it provides support for the rearrangement of the domain C helix on ligand binding and releasing proposed by Matulef et al. (Neuron 1999;24:443-452).  相似文献   

19.
Protein-DNA interactions play an essential role in the genetic activities of life. Many structures of protein-DNA complexes are already known, but the common rules on how and where proteins bind to DNA have not emerged. Many attempts have been made to predict protein-DNA interactions using structural information, but the success rate is still about 80%. We analyzed 63 protein-DNA complexes by focusing our attention on the shape of the molecular surface of the protein and DNA, along with the electrostatic potential on the surface, and constructed a new statistical evaluation function to make predictions of DNA interaction sites on protein molecular surfaces. The shape of the molecular surface was described by a combination of local and global average curvature, which are intended to describe the small convex and concave and the large-scale concave curvatures of the protein surface preferentially appearing at DNA-binding sites. Using these structural features, along with the electrostatic potential obtained by solving the Poisson-Boltzmann equation numerically, we have developed prediction schemes with 86% and 96% accuracy for DNA-binding and non-DNA-binding proteins, respectively.  相似文献   

20.
Protein crystals, routinely prepared for the elucidation of protein 3D structures by X-ray crystallography, present an ordered and highly accurate 3D array of protein molecules. Inherent to the 3D arrangement of the protein molecules in the crystal is a complementary 3D array of voids made of interconnected cavities and exhibiting highly ordered porosity. The permeability of the porosity of chemically crosslinked enzyme protein crystals to low molecular weight solutes, was used for enzyme mediated organic synthesis and size exclusion chromatography. This permeability might be extended to explore new potential applications for protein crystals, for example, their use as bio-templates for the fabrication of novel, nano-structured composite materials. The quality of composites obtained from "filling" of the ordered voids in protein crystals and their potential applications will be strongly dependent upon an accurate preservation of the order in the original protein crystal 3D array during the "filling" process. Here we propose and demonstrate the feasibility of monitoring the changes in 3D order of the protein array by a step-by-step molecular level monitoring of a model system for hydrogel bio-templating by glutaraldehyde crosslinked lysozyme crystals. This monitoring is based on step-by-step comparative analysis of data obtained from (i) X-ray crystallography: resolution, unit cell dimensions and B-factor values and (ii) fluorescence decay kinetics of ultra-fast laser activated dye, impregnated within these crystals. Our results demonstrated feasibility of the proposed monitoring approach and confirmed that the stabilized protein crystal template retained its 3D structure throughout the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号