首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The relative fibrin-binding, fibrinolytic and fibrinogenolytic properties of single-chain pro-urokinase, an inactive proenzyme form of human urokinase purified from cultured human kidney cells, and urokinase were compared. The affinity of single-chain pro-urokinase for fibrin was much higher than that of urokinase. In Vitro thrombolytic studies showed that single-chain pro-urokinase is approximately three times more potent in fibrinolysis than urokinase and that it does not degrade fibrinogen in the plasma at a concentration, at which complete plasma clot lysis takes place; whereas, urokinase extensively degrades the fibrinogen in the plasma. These specific, potent thrombolytic properties of single-chain pro-urokinase seem to be due to its high affinity for fibrin and to its conversion from the inactive single-chain form to the active two-chain form on the thrombus by the catalytic amount of plasmin generated during coagulation. This single-chain pro-urokinase obtained from human kidney cells by tissue culture should prove advantageous than urokinase in thrombolytic therapy.  相似文献   

2.
BACKGROUND: Human urokinase-type plasminogen activator has been implicated in the regulation and control of basement membrane and interstitial protein degradation. Because of its role in tissue remodeling, urokinase is a central player in the disease progression of cancer, making it an attractive target for design of an anticancer clinical agent: Few urokinase inhibitors have been described, which suggests that discovery of such a compound is in the early stages. Towards integrating structural data into this process, a new human urokinase crystal form amenable to structure-based drug design has been used to discover potent urokinase inhibitors. RESULTS: On the basis of crystallographic data, 2-naphthamidine was chosen as the lead scaffold for structure-directed optimization. This co-crystal structure shows the compound binding at the primary specificity pocket of the trypsin-like protease and at a novel binding subsite that is accessible from the 8-position of 2-napthamidine. This novel subsite was characterized and used to design two compounds with very different 8-substituents that inhibit urokinase with K(i) values of 30-40 nM. CONCLUSIONS: Utilization of a novel subsite yielded two potent urokinase inhibitors even though this site has not been widely used in inhibitor optimization with other trypsin-like proteases, such as those reported for thrombin or factor Xa. The extensive binding pockets present at the substrate-binding groove of these other proteins are blocked by unique insertion loops in urokinase, thus necessitating the utilization of additional binding subsites. Successful implementation of this strategy and characterization of the novel site provides a significant step towards the discovery of an anticancer clinical agent.  相似文献   

3.
用双功能团试剂将抗尿激酶单克隆抗体N34的IgG和抗人活化血小板α-颗粒膜蛋白GMP-140单克隆抗体SZ-51的Fab片段通过二硫键共价偶联,偶联的抗体保留了对各自抗原的亲和性。这种对尿激酶和血栓同时具有亲和活性的双专一性抗体(N34-SZ-51)提高低分子量尿激酶的溶栓效率38倍,且对血浆中纤维蛋白原的含量基本上不影响。  相似文献   

4.
A convenient and highly sensitive colorimetric assay for various proteases, such as trypsin, chymotrypsin, plasmin, thrombin, and urokinase is described. The substrates used are alpha-naphthyl ester derivatives of N alpha-tosyl-L-lysine, N alpha-acetylglycyl-L-ination of alpha-naphthol released from them. Use of these alpha-naphthyl ester derivatives made the method more sensitive than the use of the corresponding methyl or ethyl ester derivatives. The minimum detectable concentrations of trypsin, chymotrypsin, plasmin, thrombin and urokinase in this method were about 0.002 micrograms, 0.01 microgram, 0.002 CU, 0.01 IU, and 2 IU, respectively. The Km values of trypsin and thrombin for TLNE were 0.11 mM and 0.15 mM while those for TLME were 2.5 mM and 6.7 mM, respectively; the Km values of chymotrypsin for ATNE and ATEE were 0.18 mM and 0.7 mM, respectively; and the Km values of urokinase for AGLNE and AGLME were 0.17 mM and 4 mM, respectively. Zymograms of various proteases were easy to prepare using these alpha-naphthyl ester substrates, and zymograms of trypsin and chymotrypsin were made with TLNE and ATNE, respectively, as substrates.  相似文献   

5.
An increased emphasis on prevention of fatalities due to thrombovascular disorders is broadening opportunities for several cardiovascular agents, especially plasminogen activators, for preventing strokes and heart attacks. Hence, urokinase, as one of the most potent plasminogen activators is attracting a great deal of attention. Developments in cell lines and bioprocess technology have made it possible to produce urokinase from in vitro cell culture. Attempts are now underway to enhance urokinase production from cell culture through media manipulation, bioreactor cultivation, and innovative purification techniques. Downstream processing also poses an intricate problem due to the complexity of cell culture extracts, susceptibility of urokinase to autocatalytic and proteolytic degradation and due to the presence of plasminogen activator inhibitors in the culture media. Hence, enhancing cellular productivity and downstream product recovery continue to be major challenges as discussed in this review. Furthermore, an approach for integrated upstream and downstream processing is needed to develop an economically viable technology. In the present review the emerging trends in urokinase production and purification have been discussed in detail.  相似文献   

6.
The impairment of homocysteine metabolism has been related to several disorders and diseases. Recently, homocysteine has been shown to inhibit key steps of angiogenesis, including endothelial cell proliferation, invasion, and remodeling of the extracellular matrix. Since these are also key steps in tumor invasion and metastasis, it can be hypothesized that homocysteine can also interfere in these processes. Therefore, we studied the effects of homocysteine on tumor proliferation and invasion, as well as on urokinase, a key extracellular matrix-degrading protease, using a model human tumor cell line. This study demonstrates that, in fact, homocysteine inhibits HT-1080 proliferation and invasion, and is a potent inhibitor of tumor cell urokinase expression.  相似文献   

7.
Inhibition of urokinase has been shown to slow tumor growth and metastasis. To utilize structure-based drug design, human urokinase was re-engineered to provide a more optimal crystal form. The redesigned protein consists of residues Ile(16)-Lys(243) (in the chymotrypsin numbering system; for the urokinase numbering system it is Ile(159)-Lys(404)) and two point mutations, C122A and N145Q (C279A and N302Q). The protein yields crystals that diffract to ultra-high resolution at a synchrotron source. The native structure has been refined to 1.5 A resolution. This new crystal form contains an accessible active site that facilitates compound soaking, which was used to determine the co-crystal structures of urokinase in complex with the small molecule inhibitors amiloride, 4-iodo-benzo(b)thiophene-2-carboxamidine and phenylguanidine at 2. 0-2.2 A resolution. All three inhibitors bind at the primary binding pocket of urokinase. The structures of amiloride and 4-iodo-benzo(b)thiophene-2-carboxamidine also reveal that each of their halogen atoms are bound at a novel structural subsite adjacent to the primary binding pocket. This site consists of residues Gly(218), Ser(146), and Cys(191)-Cys(220) and the side chain of Lys(143). This pocket could be utilized in future drug design efforts. Crystal structures of these three inhibitors in complex with urokinase reveal strategies for the design of more potent nonpeptidic urokinase inhibitors.  相似文献   

8.
Activation of plasminogen by pro-urokinase. II. Kinetics   总被引:3,自引:0,他引:3  
The kinetics of the activation of plasminogen by recombinant pro-urokinase obtained by expression of human urokinase cDNA in Escherichia coli was studied. The conversion of pro-urokinase (U) and plasminogen (P) to urokinase (u) and plasmin (p) is represented by a sequence of three reactions which each obey Michaelis-Menten kinetics, i.e. (Formula: see text). In this model, pro-urokinase formally behaves as an enzyme in Reaction I and as a substrate in reaction II. The experimentally measured overall rates of formation of urokinase and plasmin are in good agreement with those calculated from the kinetic parameters and the initial concentrations of pro-urokinase and plasminogen, confirming the validity of the model. It appears that recombinant pro-urokinase is an equally potent activator of plasminogen (k2/Km = 0.05 microM-1 s-1), as in urokinase (k"2/K"m = 0.02 microM-1 s-1). This is due to the fact that the proenzyme, which is virtually inactive toward low Mr substrates for urokinase, forms an intermediate of the Michaelis-Menten type with plasminogen, with a much higher affinity than that of the active enzyme with its substrate. This is an exceptional phenomenon among the serine proteases.  相似文献   

9.
The catalytic properties of human urokinase have been investigated using a synthetic chromogenic substrate; α-CBZ-l-lysine-p-nitrophenyl ester (ZLNP). The enzymatic assay based on the rate of hydrolysis of ZLNP offers several advantages over other methods currently employed in different laboratories. The steady state parameters of the two purified forms of human urokinase, which differ in molecular weight (33,000 and 54,000 daltons), have been determined over the pH range 5.2–7.8, and found to be indistinguishable.  相似文献   

10.
Urokinase is a potent fibrinolytic agent. Its good tolerance and the close correlation to the dosage render the treatment well governable and reduce the possible side effects. However, the comparatively high costs have to be taken into account. Up to now, urokinase is an indispensable tool for long-term lysis.  相似文献   

11.
A comparison between the inhibitory capability of Tranexamic acid (AMCA) and its isobenzedrine ester (IB-AMCA) on the streptokinase and urokinase induced plasminogen activation, indicated in vitro a higher potency of the ester derivative. A peculiar activatory rather than inhibitory effect on the plasminogen activation was exerted by AMCA and aminocaproic acid at relatively low concentrations. Attempts to show in vivo the in vitro observed differences between AMCA and IB-AMCA action are reported.  相似文献   

12.
Inhibition of the proteolytic activity of urokinase has been shown to inhibit the progression of tumors in rodent models and is being investigated for use in human disease. Understanding the rodent/human species-specificity of urokinase inhibitors is therefore critical for interpretation of rodent cancer progression models that use these inhibitors. We report here studies with a panel of 11 diverse urokinase inhibitors in both human and mouse enzymatic assays. Inhibitors such as amiloride, B428, and naphthamidine, that occupy only the S1 subsite pocket were found to be nearly equipotent between the human and the murine enzymes. Inhibitors that access additional, more distal, pockets were significantly more potent against the human enzyme but there was no corresponding potency increase against the murine enzyme. X-ray crystallographic structures of these compounds bound to the serine protease domain of human urokinase were solved and examined in order to explain the human/mouse potency differences. The differences in inhibitor potency could be attributed to four amino acid residues that differ between murine and human urokinases: 60, 99, 146, and 192. These residues are Asp, His, Ser, and Gln in human and Gln, Tyr, Glu, and Lys in mouse, respectively. Compounds bearing a cationic group that interacts with residue 60 will preferentially bind to the human enzyme because of favorable electrostatic interactions. The hydrogen bonding to residue 192 and steric considerations with residues 99 and 146 also contribute to the species specificity. The nonparallel human/mouse enzyme inhibition observations were extended to a cell-culture assay of urokinase-activated plasminogen-mediated fibronectin degradation with analogous results. These studies will aid the interpretation of in vivo evaluation of urokinase inhibitors.  相似文献   

13.
The serine protease urokinase plasminogen activator (uPA) is thought to play a central role in tumor metastasis and angiogenesis. Molecular modeling studies suggest that 5-thiomethylthiopheneamidine inhibits uPA by binding at the S1 pocket of the active site. Further structure based elaboration of this residue resulted in a novel class of potent and selective inhibitors of uPA.  相似文献   

14.
M S Runge  C Bode  G R Matsueda  E Haber 《Biochemistry》1988,27(4):1153-1157
Tissue plasminogen activator (tPA) was covalently linked by disulfide bonds to a monoclonal antibody specific for the amino terminus of the beta chain of fibrin (antibody 59D8). The activity of the tPA-59D8 conjugate was compared with that of tPA, urokinase (UK), and a UK-59D8 conjugate. For lysis of fibrin monomer, tPA was 10 times as potent as UK, whereas both UK-59D8 and tPA-59D8 conjugates were 100 times as potent as UK and 10 times as potent as tPA. Conjugation of tPA or UK to antibody 59D8 produced a 3.2-4.5-fold enhancement in clot lysis in human plasma over that of the respective unconjugated plasminogen activator. However, the UK-59D8 conjugate was only as potent as tPA alone. Antibody-conjugated tPA or UK consumed less fibrinogen, alpha 2-antiplasmin, and plasminogen than did the unconjugated activators, at equipotent fibrinolytic concentrations. Antibody targeting thus appears to increase the concentration of tPA in the vicinity of a fibrin deposit, which thereby leads to enhanced fibrinolysis.  相似文献   

15.
A glia-derived neurite-promoting factor with protease inhibitory activity.   总被引:22,自引:6,他引:16  
J Guenther  H Nick    D Monard 《The EMBO journal》1985,4(8):1963-1966
Brain cells and glioma cells in culture release a protein which induces neurite outgrowth in neuroblastoma cells. This neurite-promoting factor (NPF), which has been purified from serum-free glioma conditioned medium, has an apparent mol. wt. of 43 000. NPF inhibits urokinase as well as plasminogen activator-dependent caseinolysis or fibrinolysis. NPF and urokinase form an SDS-resistant complex. The fact that this glia-derived NPF is a potent protease inhibitor indicates that glial cells modulate the proteolytic activity associated with neuronal cells and suggests that this phenomenon is one of the biochemical events involved in the regulation of neurite growth.  相似文献   

16.
Substituted ureas with a carboxylic acid ester as a secondary pharmacophore are potent soluble epoxide hydrolase (sEH) inhibitors. Although the ester substituent imparts better physical properties, such compounds are quickly metabolized to the corresponding less potent acids. Toward producing biologically active ester compounds, a series of esters were prepared and evaluated for potency on the human enzyme, stability in human liver microsomes, and physical properties. Modifications around the ester function enhanced in vitro metabolic stability of the ester inhibitors up to 32-fold without a decrease in inhibition potency. Further, several compounds had improved physical properties.  相似文献   

17.
An inhibitor of plasminogen activator (PA) secreted by a tumorigenic, but non-metastatic, rat mammary adenocarcinoma cell line has been purified to apparent homogeneity and characterized. It strongly inhibited human urokinase, but was 100 times less potent in inhibiting bovine trypsin and had no effect on plasmin or thrombin. A secreted, urokinase-type PA (Mr 48 000) and a cell-associated PA from a metastatic rat adenocarcinoma cell line were also strongly inhibited. In contrast, a tissue-type PA (Mr 66 000), secreted by human melanoma cells, was only slightly inhibited. Purified inhibitor showed a band of Mr 66 000 in sodium dodecyl sulphate/polyacrylamide gel electrophoresis and an isoelectric point of 4.5 after chromatofocusing. The inhibition of human urokinase was non-competitive.  相似文献   

18.
Heparin binding to the urokinase kringle domain.   总被引:5,自引:0,他引:5  
The binding of urokinase to immobilized heparin and dextran sulfate was studied using activity assays of the bound urokinase. The markedly higher binding observed with high M(r) urokinase compared to low M(r) urokinase indicated a role for the amino-terminal fragment (ATF). This was confirmed by the use of inactive truncated urokinase and monoclonal antibodies specific for the ATF in competition assays of urokinase binding. Antibody competition assays suggested a site in the kringle domain, and a synthetic decapeptide Arg-52-Trp-62 from the kringle sequence (kringle numbering convention) was competitive in assays of urokinase binding to dextran sulfate and heparin. Heparin binding to the urokinase kringle was unambiguously demonstrated via 1H NMR spectroscopy at 500 MHz. Effective equilibrium association constants (K(a)*) were determined for the interaction of isolated kringle fragment and low M(r) heparin at pH 7.2. The binding was strong in salt-free 2H2O (K(a)* approximately 57 mM-1) and remained significant in 0.15 M NaCl (K(a)* approximately 12 mM-1), supporting a potential physiological role for the interaction. This is the first demonstration of a function for the kringle domain of urokinase, and it suggests that while the classical kringle structure has specificity for lysine binding, there may also exist a class of kringles with affinity for polyanion binding.  相似文献   

19.
A series of 4-amidinobenzylamine-based peptidomimetic inhibitors of urokinase was synthesized. The most potent one, benzylsulfonyl-D-Ser-Ala-4-amidinobenzylamide 16, inhibits uPA with a K(i) of 7.7 nM but is less selective than 10 with a Gly as P2 residue. Hydroxyamidine and carbonate prodrugs were prepared, which are rapidly converted into the active inhibitors in rats after subcutaneous application.  相似文献   

20.
The ability of macrophages to reach inflammatory loci is crucial in the function of cellular immunity. Invasive properties of macrophages may be due to the proteinase urokinase which binds to cell surface receptors, and thereby confers on macrophages the capacity for localized proteolysis of the interstitium. Here, we investigated the role of the macrophage-activating factors IFN-gamma, TNF-alpha, and granulocyte-macrophage-CSF and of urokinase on the expression of urokinase receptors by human cultured monocytes. IFN-gamma and TNF-alpha induced increased urokinase binding to human cultured monocytes in a time- and dose-dependent fashion. At optimal concentrations, IFN-gamma (200 U/ml) increased the number of receptors/cell from 14,000 to 64,000, TNF-alpha (50 U/ml) to 30,000, and combinations of IFN-gamma and TNF-alpha to 90,000. Granulocyte-macrophage-CSF had no effect. The enhanced urokinase binding is due to increased numbers of urokinase receptors and not an increased affinity of the receptor for urokinase. In the presence of urokinase during monocyte activation, IFN-gamma induced only 25,000 receptors/cell. However, urokinase does not inhibit increased receptor expression when the cells are activated with TNF-alpha. The effect of urokinase on induction of urokinase receptors by combinations of IFN-gamma and TNF-alpha varied with the dosage of TNF-alpha: A combination of IFN-gamma (200 U/ml) and TNF-alpha (15 U/ml) induced 38,000 receptors/cell in the presence and 90,000 receptors/cells in the absence of urokinase, whereas IFN-gamma (200 U/ml) and TNF-alpha (20 U/ml) induced 90,000 receptors/cell in the absence and presence of urokinase. These studies demonstrate that IFN-gamma, TNF-alpha, and urokinase collectively regulate the number of urokinase receptors on human monocytes. The induction of urokinase receptors may be responsible for increased invasiveness of the activated macrophage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号