首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our earlier investigations culminated in the discovery of a unique membrane-bound enzyme Calreticulin transacetylase (CRTAase) in mammalian cells catalyzing the transfer of acetyl group from polyphenolic acetates (PAs) to certain functional proteins viz. Glutathione S-transferase (GST), NADPH Cytochrome c reductase and Nitric oxide synthase (NOS) resulting in the modulation of their biological activities. In order to develop SAR study, herein, we studied the influence of alkyl group at C-3 position of acetoxy coumarins on the CRTAase activity. The alkylated acetoxy coumarins lead to inhibition of catalytic activity of GST, and ADP induced platelet aggregation by the way of activation of platelet Nitric oxide synthase (NOS). Furthermore, the increase in size of the coumarin C-3 alkyl group was found to decrease the CRTAase activity.  相似文献   

2.
We present the DNA-assisted control of enzymatic activity for the detection of a target protein using a new type of DNA–enzyme conjugate. The conjugate is composed of an enzyme inhibitor to regulate enzyme activity and a DNA aptamer to be responsive toward the analyte protein. Glutathione S-transferase (GST) and thrombin were selected as a model enzyme and an analyte protein. A hexahistidine tag was genetically attached to the C terminus of the GST, and the 5′ end of an oligonucleotide was conjugated with nitrilotriacetic acid (NTA) for the site-specific conjugation of the DNA with the GST based on a Ni2+ complex interaction. We found that fluorescein acted as a weak inhibitor of GST and succeeded in the regulation of GST activity by increasing the local concentration of the weak inhibitor by the hybridization of a 3′-end fluorescein-modified DNA. The catalytic activity of the DNA aptamer–enzyme conjugate showed a dose-dependent response to thrombin, indicating that the GST activity was clearly recovered by the binding of the DNA aptamer to thrombin. The current system enables the sensitive and specific detection of thrombin simply by measuring the enzymatic activity in a homogeneous medium.  相似文献   

3.
烟粉虱体内几种抗性酶对寄主转换的响应   总被引:1,自引:0,他引:1  
将烟粉虱分别从嗜性较强的番茄植株上转移到嗜性相对较弱的国抗22(GK22)棉花、泗棉3号(S3)棉花和辣椒植株上,以及从嗜性较弱的辣椒植株上转移到嗜性相对较强的番茄、GK22棉花和S3棉花植株上,观察寄主转移后F1代、F2代和F3代烟粉虱体内α-NA羧酸酯酶、谷胱甘肽-s-转移酶和多功能氧化酶活性的变化,再将F4代烟粉虱转移到原寄主,同样观察这3种抗性酶的变化。结果表明,不同嗜性的寄主上烟粉虱体内3种酶活性的强弱与烟粉虱对这种寄主的嗜性相关,在嗜性较强的寄主上,3种酶的活性相对较低。烟粉虱从嗜性较强的寄主转移到嗜性相对较弱的寄主后,成虫体内α-NA羧酸酯酶、谷胱甘肽-s-转移酶和多功能氧化酶的活性显著上升,从嗜性较弱的寄主转移到嗜性较强的寄主后,羧酸酯酶和谷胱甘肽-s-转移酶的活性下降。在寄主转移过程中,烟粉虱体内的α-NA羧酸酯酶和谷胱甘肽-s-转移酶活性一般在F2代基本稳定,而多功能氧化酶在F1代就能迅速稳定。烟粉虱从过渡寄主再转移到原寄主的过程中,其3种酶的变化规律与上述寄主基本一致。结果提示,在烟粉虱寄主转换过程中,多功能氧化酶具有快速响应特性和较强的稳定性,而α-NA羧酸酯酶和谷胱甘肽-s-转移酶活性的变化与烟粉虱对寄主的适应度变化基本一致。  相似文献   

4.
Hearne JL  Colman RF 《Biochemistry》2006,45(19):5974-5984
Although rat glutathione transferase M1-1 is crystallized as a homodimer (GST M1-1), we have generated monomers (GST M1) of the enzyme by adding potassium bromide to buffer solutions containing the wild-type enzyme and by introducing point mutations in the electrostatic region of the subunit interface. The wild-type enzyme was evaluated in 0.05 M MES (pH 6.5) containing up to 3 M KBr. We report that the addition of KBr greatly influences the monomer-dimer equilibrium of the wild-type enzyme and that at 3 M KBr GST M1 has a specific activity close to that of GST M1-1. Since the effect of KBr is likely due to charge screening at the subunit interface, the influence on the monomer-dimer equilibrium exerted by the amino acid residues in the electrostatic region of the interface (Arg77, Asp97, Glu100, Asn101) was investigated. Mutations introduced at positions 97, 100, and 101 promote monomerization, resulting in enzymes that exhibit a decreased weight average molecular weight in comparison to that of the wild-type enzyme. However, only mutations at position 97 result in enzymes that have catalytic activity in the monomeric form. The mutations introduced at positions 100 or 101 result in enzymes whose activity can be accounted for by the amount of dimeric enzyme present. Our results indicate that the electrostatic region of the interface is important in the monomer-dimer equilibrium of glutathione transferase and that, although GST M1-1 may be more active than GST M1, the dimer is not required for catalytic function.  相似文献   

5.
Fluoroacetate-specific defluorinase (FSD) is a critical enzyme in the detoxication of fluoroacetate. This study investigated whether FSD can be classed as a glutathione S-transferase (GST) isoenzyme with a high specificity for fluoroacetate detoxication metabolism. The majority of FSD and GST activity, using 1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) as GST substrates, in rat liver was cytosolic. GSTT1 specific substrate, EPNP caused a slight non-competitive inhibition of FSD activity. CDNB, a general substrate of GST isoenzyme, was a more potent non-competitive inhibitor of FSD activity. The fluoroacetate defluorination activity by GST isoenzymes was determined in this study. The results showed that the GSTZ1C had the highest fluoroacetate defluorination activity of the various GST isoenzymes studied, while GSTA2 had a limited activity toward fluoroacetate. The human GSTZ1C recombinant protein then was purified from a human GSTZ1C cDNA clone. Our experiments showed that GSTZ1C catalysed fluoroacetate defluorination. GSTZ1 shares many of the characteristics of FSD; however, it accounts only for 3% of the total cytosolic FSD activity. GSTZ1C based enzyme kinetic studies has low affinity for fluoroacetate. The evidence suggests that GSTZ1 may not be the major enzyme defluorinating fluoroacetate, but it does detoxify the fluoroacetate. To clarify the identity of enzymes responsible for fluoroacetate detoxication, further studies of the overall FSD activity are needed.  相似文献   

6.
Protection of glutathione S-transferase from bilirubin inhibition   总被引:1,自引:0,他引:1  
Inhibition of the enzyme activity of glutathione S-transferase (GST) by a physiological concentration of bilirubin was studied using various substrates. When rat liver cytosol was used as an unfractionated GST, its GSH-conjugation activity toward 1-chloro-2,4-dinitrobenzene was decreased to one-half by bilirubin, while the activity toward 1,2-dichloro-4-nitrobenzene, p-nitrobenzyl chloride, or 1,2-epoxy-(p-nitrophenoxy)propane and also the non-selenium dependent GSH-peroxidase activity toward cumene hydroperoxide (CHPx activity) were hardly affected under the same conditions. In contrast, bilirubin inhibited each of the purified GST isozymes and no remarkable difference in bilirubin inhibition was observed with any of the substrates tested. From the chromatographic analysis of the cytosol incubated with [3H]bilirubin, it was found that a major part of the added bilirubin binds to subunit 1 (Ya) of GST isozyme, leaving not only the conjugation activity derived from 3-4 type GST but also the CHPx activity of subunit 2 (Yc) quantitatively intact. The bilirubin inhibition of both the conjugation activity of GST 3-4 and the CHPx activity of GST 2-2 was prevented almost completely by addition of a 3-fold molar excess of GST 1-1. From these results, it was assumed that the enzyme activities of both 3-4 type GSTs and subunit 2 (Yc) were protected from the inhibitory action of bilirubin by the scavenger effect of subunit 1 (Ya).  相似文献   

7.
梨形环棱螺五种酶分子与大运河底泥重金属含量相关分析   总被引:1,自引:0,他引:1  
运用样点笼内放养法,研究了京杭大运河不同污染程度环境对梨形环棱螺内脏团中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-PX)、谷胱甘肽-S-转移酶(GST)和胆碱酯酶(CHE)的影响,进行了酶活性与样点底泥重金属含量的相关分析.结果表明,梨形环棱螺组织抗氧化保护酶系统的SOD、CAT、GSH-PX和GST活性是指示污染的敏感指标,其监测结果与水化学评价结果基本一致.在10 d暴露中,SOD酶活性被激活,CAT、GSH-PX和GST酶活性在污染环境中被抑制,CHE活性变化比较复杂.酶活性变化与底泥重金属的含量相关性很大.  相似文献   

8.
Glutathionyl S-[4-(succinimidyl)benzophenone] (GS-Succ-BP), an analogue of the product of glutathione and electrophilic substrate, acts as a photoaffinity label of dimeric rat liver glutathione S-transferase (GST), isoenzyme 1-1. A time-dependent loss of enzyme activity is observed upon irradiation of the enzyme with long wavelength UV light in the presence of the reagent. The initial rate of inactivation exhibits nonlinear dependence on the concentration of the reagent, characterized by an apparent dissociation constant of the enzyme-reagent complex (K(R)) of 99 +/- 2 microM and k(max) of 0.082 +/- 0.005 min(-1). Protection against this inactivation is provided by the electrophilic substrate (ethacrynic acid), electrophilic substrate analogue (dinitrophenol), and product analogues (S-hexylglutathione and p-nitrobenzylglutathione) but not by steroids (Delta(5)-androstene-3,17-dione and 17beta-estradiol-3, 17-disulfate). These results suggest that GS-Succ-BP binds and reacts with the enzyme within the xenobiotic substrate binding site, and this reaction site is distinct from the substrate and nonsubstrate steroid binding sites of the enzyme. About 1 mol of reagent is incorporated into 1 mol of enzyme dimer when the enzyme is completely inactivated. Met-208 is the only amino acid target of the reagent, and modification of this residue in one enzyme subunit of the GST 1-1 dimer completely abolishes the enzyme activity of both subunits. In order to evaluate the role of subunit interactions in the Alpha class glutathione S-transferases, inactive GS-Succ-BP-modified GST 1-1 was mixed with unlabeled, active GST 2-2. The enzyme subunits were dissociated in dilute trifluoroacetic acid and then renatured at pH 7.8 and separated by chromatofocusing into GST 1-1, 1-2, and 2-2. The specific activities of the heterodimer toward several substrates indicate that the loss of catalytic activity in the unmodified subunit of the modified GST 1-1 is the indirect result of the interaction between the two enzyme subunits and that this subunit interaction is absent in the heterodimer GST 1-2.  相似文献   

9.
The work presented here deals with the status of glutathione-S-transferase (GST; E.C. 2.5.1.18), the major enzyme of the phase II detoxification pathway, in bovine filarial worms Setaria cervi. GST activity was determined in various subcellular fractions of bovine filarial worms S. cervi (Bubalus bubalis Linn.) and was found to be mainly associated with cytosolic and microsomal fractions. The respective specific activities of the enzyme from cytosolic and microsomal fractions of S. cervi females were determined to be 0.122 +/- 0.024 and 0.010 +/- 0.0052 micromol/min/mg protein, respectively. Cytosolic enzyme was found to possess optimal activity between pH 6.5 and 7.5, whereas the microsomal enzyme showed a broad pH optima, centered at pH 6.0. Kinetic studies on the cytosolic and microsomal forms of the enzyme revealed significant differences between them, thereby indicating that microsomal GST from S. cervi is quite distinct to the cytosolic protein catalyzing the same reaction.  相似文献   

10.
Among the cytoplasmatic enzymes responsible for neutralization of organic xenobiotics, carboxylesterases (CarE) and glutathione S-transferases (GST) play important roles. Our study tested to what extent dietary Zn or Cd could modify the activity of CarE and GST at different life-stages of the carabid beetle Poecilus cupreus. Treatment and stage effects generally were statistically significant. For CarE activity in the beetles exposed to cadmium, only treatment was a significant factor. In all cases, the interaction between studied factors was statistically significant, implying that the physiological condition of the animals may enhance or reduce enzyme activity. We also observed differences between animals treated with cadmium and zinc in the pattern of enzyme activity, and a difference in GST activity measured with two different substrates. Our results confirmed that in studying enzyme activity under metal stress one should consider the animal's life-stage and sex.  相似文献   

11.
12.
alpha-Tocopherol inhibits human glutathione S-transferase pi   总被引:2,自引:0,他引:2  
alpha-Tocopherol is the most important fat-soluble, chain-breaking antioxidant. It is known that interplay between different protective mechanisms occurs. GSTs can catalyze glutathione conjugation with various electrophiles, many of which are toxic. We studied the influence of alpha-tocopherol on the activity of the cytosolic pi isoform of GST. alpha-Tocopherol inhibits glutathione S-transferase pi in a concentration-dependent manner, with an IC(50)-value of 0.5 microM. At alpha-tocopherol additions above 3 microM there was no GST pi activity left. alpha-Tocopherol lowered the V(max) values, but did not affect the K(m) for either CDNB or GSH. This indicates that the GST pi enzyme is noncompetitively inhibited by alpha-tocopherol. An inhibition of GST pi by alpha-tocopherol may have far-reaching implications for the application of vitamin E.  相似文献   

13.
In the adult dog liver cytosol we identified four glutathione S-transferase (GST) subunits, Yd1 (Mr 26,000), Yd2 (Mr 27,000), Yd3 (Mr 28,000), and Ydf (Mr 27,400), and purified GST forms comprising Yd1, Yd2, and Yd3, to apparent homogeneity. Unlike rat transferases the enzyme activity toward 1,2-dichloro-4-nitrobenzene (DCNB) was not retained on the affinity column. Thus the DCNB-active enzyme, GST YdfYdf, from the flow-through fraction of the affinity column was also purified to homogeneity by gel filtration, DE52 chromatography, chromatofocusing, and hydroxylapatite column chromatography. Immunoblot analysis of dog GSTs revealed that the subunits Yd1, Yd2, and Yd3 belong to the pi, alpha, and mu class, respectively. On the contrary, Ydf had no reactivity with antibodies raised against any of the three classes of GST. Each subunit, Yd1, Yd2, Yd3, and Ydf, was distinguishable by its own retention time on reverse-phase high performance liquid chromatography. N-terminal amino acid sequences of the dog GSTS Yd1Yd1 and Yd3Yd3 revealed a high degree of homology to the pi and mu class transferases from rat, human, and mouse, respectively, while the N terminus of Yd2Yd2 is blocked. N-terminal amino acid sequences of GST YdfYdf showed no homology to any of the three classes of GST. The most significant property noted of GST YdfYdf is the high specific activity toward DCNB, exceeding by 1 order of magnitude the corresponding values for the known mu class GSTs. The present results strongly suggest that dog GST YdfYdf is a unique enzyme distinct from the hitherto characterized GST isozymes.  相似文献   

14.
The present study reports the purification and characterization of GST from cytosolic fraction of Setaria cervi. GST activity was determined in various subcellular fractions of bovine filarial worms S. cervi (Bubalus bubalis Linn.) and was found to be localized mainly in the cytosolic and microsomal fractions. The soluble enzyme from S. cervi was purified to homogeneity using a combination of salt precipitation, centrifugation, cation exchange and GSH-Sepharose affinity chromatography followed by ultrafiltration. SDS-PAGE analysis revealed a single band and activity staining was also detected on PAGE gels. Gel filtration and MALDI-TOF studies revealed that the native enzyme is a homodimer with a subunit molecular mass of 24.6 kDa. Comparison of kinetic properties of the parasitic and mammalian enzymes revealed significant differences between them. The substrate specificity and inhibitor profile of cytosolic GST from S. cervi appeared to be different from GST from mammalian sources.  相似文献   

15.
Differential expression of glutathione S-transferase (GST) enzyme activity in various tissues of the camel was observed with a maximum activity in the liver. Compared with the rat and human livers, GST activity in camel liver was 50% lower than that of rat liver and similar to that of human liver. Extrahepatic tissues in camel have a comparable GST activity with those of similar tissues in the rat. Assay of GST activity using ethacrynic acid as substrate demonstrated maximum activity in the camel brain followed by intestine, liver and kidney. Microsomal GST activity in camel tissues was expressed in the order of liver > testis > intestine ≈ kidney ≈ brain. Phenotyping of GST was performed in camel hepatic and extrahepatic tissues using human specific antibodies to class α, μ, and π cytosolic GST isoenzymes and rat specific antibody to the microsomal GST. Western immunoblot and immunohistochemical analyses showed an abundant expression of GST α and μ in the camel liver, while π was very poorly expressed. Camel extrahepatic tissues however, had a significant expression of GST π. The camel GST isoenzymes were found to be predominantly expressed in the hepatocytes around the central vein with a gradual decrease in expression in the hepatocytes located toward the periphery. Kidney cortex exhibited a greater expression of the enzyme protein in the proximal tubules as compared to the glomeruli. Glutathione (GSH) concentration in rat tissues, except in the brain, was about 2-fold higher than that of camel tissues. Rate of NADPH-dependent microsomal lipid peroxidation was comparable both in the rat and camel tissues with the highest activity in the brain and lowest activity in the intestine. The differential expression of GST isoenzymes in different organs of the camel, GSH concentration and the rate of lipid peroxidation in different tissues may be important factors in determining the differential susceptibility of camel tissues to the toxic effects of xenobiotics.  相似文献   

16.
We examined CYP1A (measured using hepatic EROD and MROD activities) and glutathione-S-transferase (GST) activities in juvenile alligators (Alligator mississippiensis) collected from three sites with varying contamination in the Kissimmee-Everglades drainage in south Florida. We hypothesized that contaminants present in areas with intermediate or higher contaminant concentrations would alter hepatic enzyme activities in juvenile alligators from those sites when compared to hepatic enzyme activity in animals from the area with the least contamination. EROD activity was found to be higher in animals from the site with lower reported levels of contamination relative to those from the site with the highest reported contamination suggesting an inhibition of CYP1A expression or activity. No differences among animals from the three sites were observed for hepatic MROD and GST activities. A significant negative relationship between EROD, MROD, and GST activities and body size was exhibited in alligators from the site with the lowest contamination. No relationship between body size and hepatic enzyme activity was found in animals from the sites with intermediate and higher contamination, suggesting that contaminants present at these sites act to alter this relationship. No correlation was observed in this study between plasma steroid concentrations (estradiol-17 beta or testosterone) and hepatic EROD, MROD, or GST activities.  相似文献   

17.
Glutathione transferases (GSTs, EC 2.5.1.18) possess multiple functions and have potential applications in biotechnology. Direct evidence of underestimation of activity of human GST A3-3 and porcine GST A2-2 measured at submicromolar enzyme concentrations is reported here for the first time. The combination of time-dependent and enzyme concentration-dependent loss of activity and the choice of the organic solvent for substrates were found to cause irreproducibility of activity measurements of GSTs. These effects contribute to high variability of activity values of porcine GST A2-2 and human Alpha-class GSTs reported in the literature. Adsorption of GSTs to surfaces was found to be the main explanation of the observed phenomena. Several approaches to improved functional comparison of highly active GSTs are proposed.  相似文献   

18.
Treatment of cells with a synthetic conjugate of DXR with GSH via glutaraldehyde (GSH-DXR) caused cytochrome c to be released from the mitochondria to the cytosol following potent activation of caspase-3 and -9 by typical DNA fragmentation. This apoptosis was regulated by the JNK-signaling pathway. In the present experiment, binding of GSH-DXR to GST P1-1 allosterically led to the disappearance of its enzyme activity and activated the kinase activity of JNK without dissociation of the JNK-GST P1-1 complex. The recombinant GST P1-1 molecule with a mutation in the active center region (W38H and C47S) lost its GST activity when bound to JNK to the same degree as the wild-type, with the mutated GST P1-1 molecule failing to inhibit the activity of JNK. It has been reported that JNK-signaling is regulated by GST P1-1 via interaction with the C-terminus. We confirmed that GST P1-1 deletion mutant (Δ194–209) and a site-directed mutant (R201A) in the C-terminal region failed to bind and inhibit JNK. These results indicated that not only binding of the C-terminal region of GST P1-1 to the JNK molecule, but also the active center region of GST P1-1 play important roles in the regulation of JNK enzyme activity. The findings suggested that allosteric inhibition of GST P1-1 activity by the binding of GSH-DXR following conformational change may activate JNK and induce apoptosis via the mitochondrial pathway in the cells.  相似文献   

19.
Abstract:  An enzyme that possesses glutathione S -transferase (GST) activity was found in the fall webworm, Hyphantria cunea . The enzyme was purified to homogeneity for the first time by ammonium sulphate fractionation and affinity chromatography. The N-terminal sequence of the purified protein was similar to those of Sigma-class GSTs. The purified GST retained more than 75% of its original GST activity after incubation at pH 5–8. Incubation for 30 min at temperatures below 50°C scarcely affected the activity. The enzyme was able to catalyse the reaction of glutathione with 1-chloro-2,4-dinitrobenzene, a universal substrate for GST, as well as with 4-hydroxynonenal, a product of lipid peroxidation.  相似文献   

20.

Background

Recent studies have demonstrated that the actions of platelets may unfavorably influence post-transplant function of organ allografts. In this study, the association between post-transplant graft function and the perioperative activity of platelet antioxidants was examined among kidney recipients divided into early (EGF), slow (SGF), and delayed graft function (DGF) groups.

Methodology/Principal Findings

Activities of superoxide dismutase, catalase, glutathione transferase (GST), glutathione peroxidase, and glucose-6-phosphate dehydrogenase (G6P) were determined and levels of glutathione, oxidized glutathione, and isoprostane were measured in blood samples collected immediately before and during the first and fifth minutes of renal allograft reperfusion. Our results demonstrated a significant increase in isoprostane levels in all groups. Interestingly, in DGF patients, significantly lower levels of perioperative activity of catalase (p<0.02) and GST (p<0.02) were observed. Moreover, in our study, the activity of platelet antioxidants was associated with intensity of perioperative oxidative stress. For discriminating SGF/DGF from EGF, sensitivity, specificity, and positive and negative predictive values of platelet antioxidants were 81–91%, 50–58%, 32–37%, and 90–90.5%, respectively.

Conclusions

During renal transplantation, significant changes occur in the activity of platelet antioxidants. These changes seem to be associated with post-transplant graft function and can be potentially used to differentiate between EGF and SGF/DGF. To the best of our knowledge, this is the first study to reveal the potential protective role of platelets in the human transplantation setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号