首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The chief mode of carbonate sedimentation on the Belizean atolls Glovers Reef, Lighthouse Reef and Turneffe Islands is the accumulation of organically-derived particles. Variations in the distribution of the composition and grain-sizes of surface sediments, collected along transects across the atolls, are environmentally controlled. Two major sediment types may be distinguished. (1) Reef and fore reef sediments are dominated by fragments of coral, coralline algae andHalimeda. Mean grain-sizes range from 1–2 mm. (2) Back reef sediments contain more mollusk fragments, more fine-grained sediment (<125 μm) and appear to have fewerHalimeda fragments. In addition, sediments from inner platforms and shallow lagoonal parts of Glovers and Lighthouse Reefs comprise non-skeletal grains, namely fecal pellets. Sediments from lagoonal patch reefs may contain up to 20% coral fragments. Mean grain-sizes range from 0.1–1 mm and are finest on the inner platform and lagoon floor of the back reef environment. Within the reef and fore reef environments, it is not possible to distinguish sub-environments on the basis of textural and compositional differences of the sediments. Sediments from patch reefs contrast with those from back reef lagoons and inner platforms and are similar in terms of grain-sizes and compositions to reef and fore reef surface sediments. Non-skeletal grains forming in shallow parts of the back reef in Glovers and Lighthouse Reefs are interpreted to be indurated by interstitial precipitation of calcium carbonate from warm, supersaturated water flushing the sediment. The lack of hardened non-skeletal particles in the back reef sediments of Turneffe Islands is most probably due to the abundance of muddy, organic-rich sediment in the well-protected lagoon. Fine sediment is less permeable and organic films prevent cement overgrowth on particles.  相似文献   

2.
Eberhard Gischler 《Facies》2006,52(3):341-360
A first systematic study of composition, texture, and distribution of modern sediments in two Maldivian atolls reveals the predominance of skeletal carbonates. Fragments of corals, calcareous algae, mollusks, benthic foraminifera, and echinoderms are identified in the grain-size fraction >125 μm. Non-skeletal grains such as cemented fecal pellets and aggregate grains only occur in small percentages. Fragments of skeletal grains, aragonite needles, and nanograins (<1 μm) are found in the grain-size fraction <125 μm. Needles and nanograins are interpreted to be largely of skeletal origin. Five sedimentary facies are distinguished (1–5), for which the Dunham-classification is applied. Fore reef, reef, back reef, as well as lagoonal patch reef and faro areas in both atolls are characterized by the occurrence of coral grainstones (1), which also contain fragments of red coralline algae, the codiacean alga Halimeda, and mollusks. On reef islands, coral-rich sediment is cemented to form intertidal beachrock and supratidal cayrock. Skeletal grains in atoll-interior lagoons are mainly mollusks and foraminifera. The lagoon of Rasdhoo Atoll is covered in the west by mudstones (2), in the center by mollusk packstones (3) and mollusk wackestones (4), and by hard bottoms with corals in the east adjacent to channels through the atoll reef margin. The interior lagoon of Ari Atoll contains mollusk wackestones (4) in the center and mollusk-foraminifer packstones (5). Marginal lagoon areas are characterized by hard bottoms with corals. Facies distribution appears to be an expression of depositional energy, which decreases from the atoll margin towards the center in Ari Atoll, and towards the west in Rasdhoo Atoll. Predominant sediment mineralogies include aragonite and high-magnesium calcite. Mean aragonite content decreases from 90% in coral grainstone to 70–80% in mollusk packstone, mollusk wackestone, and mudstone, and to 50% in mollusk-foraminifer packstone. Stable isotopes of oxygen and carbon in bulk samples range from −3 to −1.5 (δ18O) and from +0.4 to +3.2 (δ13C). It is not possible to delineate facies based on O- and C-isotopes.  相似文献   

3.
Variation in diversity of coral reef fish between French Polynesian atolls   总被引:3,自引:0,他引:3  
The diversity of coral reef fish in seven atolls in French Polynesia is analyzed with respect to geomorphological characteristics of the atolls. The results show that size of the lagoon is more important than confinement in affecting overall fish diversity. This result suggests that island biogeographic theory, as developed by MacArthur and Wilson for terrestrial animals, also applies to reef fish in that more area gives more habitat complexity which, in turn, supports higher fish diversity. However, species diversity within a given family appears to be affected more by ecological parameters, such as living coral cover, food diversity, and reproductive behavior, than geomorphological features.  相似文献   

4.
Henderson Island, in the Pitcairn Group, preserves a Pleistocene atoll physiography with the rim of the raised reef structure, supporting spur and groove topography, enclosing a central lagoon. Excellent preservation of coral reef communities occurs along the ancient atoll rim and within the central lagoon. The previously interpreted depositional nature of the fossil atoll structure is herein corroborated with geomorphologic and stratigraphic evidence from previously un-visited portions of the island. Stratigraphic and lateral facies relationships indicate a physiographic zonation which includes spur and grooves, outer reef flat, lagoon margin, and an interior lagoon with patch reefs. The in situ occurrence and zonation of reef coral communities around the periphery and within the interior of the island appear to reflect the original physiography of the atoll lagoon, with the most pronounced reef development on the SE side of the original atoll. Stratigraphic units which comprise the raised atoll lagoon structure represent different time intervals, so the atoll lagoon structure formed during various sea level fluctuations. The modern atolls of the Pitcairn Group, Oeno and Ducie, provide some comparisons (similarities and differences) with the fossil lagoon on top of Henderson Island.  相似文献   

5.
Environmental conditions between the outer reef slope (ORS) and lagoon in tropical atolls are significantly different, but the variations of juvenile coral-microbiomes in the two environments and their relationship with coral thermal acclimatization are poorly understood. We explored this issue based on local water conditions and the microbiome of juvenile corals in the ORS and lagoon in the central South China Sea. Coral-symbiotic Symbiodiniaceae showed significant differences among coral species; Pocillopora verrucosa and Pachyseris rugosa in the ORS, and Acropora formosa in the lagoon were dominated by Durusdinium, but other corals were dominated by Cladocopium. Although A. formosa in the ORS were dominated by Cladocopium (C3u), they were dominated by Durusdinium (D1/D1a) and Cladocopium (C50) in the lagoon. Other coral species were both dominated by Cladocopium in the lagoon and ORS. The relative abundance of bacteria in the Deinococcus–Thermus was generally higher in the lagoon corals than in the ORS corals. Our study indicates that P. verrucosa, P. rugosa and Porites lutea may have high thermal tolerance based on the relatively high abundance of heat-tolerant Durusdinium and Thermus scotoductus. Likewise, A. formosa in the lagoon may acclimatize to the thermal environment based on a high relative abundance of heat-tolerant Durusdinium.  相似文献   

6.
The Line Islands are calcium carbonate coral reef platforms located in iron-poor regions of the central Pacific. Natural terrestrial run-off of iron is non-existent and aerial deposition is extremely low. However, a number of ship groundings have occurred on these atolls. The reefs surrounding the shipwreck debris are characterized by high benthic cover of turf algae, macroalgae, cyanobacterial mats and corallimorphs, as well as particulate-laden, cloudy water. These sites also have very low coral and crustose coralline algal cover and are call black reefs because of the dark-colored benthic community and reduced clarity of the overlying water column. Here we use a combination of benthic surveys, chemistry, metagenomics and microcosms to investigate if and how shipwrecks initiate and maintain black reefs. Comparative surveys show that the live coral cover was reduced from 40 to 60% to <10% on black reefs on Millennium, Tabuaeran and Kingman. These three sites are relatively large (>0.75 km2). The phase shift occurs rapidly; the Kingman black reef formed within 3 years of the ship grounding. Iron concentrations in algae tissue from the Millennium black reef site were six times higher than in algae collected from reference sites. Metagenomic sequencing of the Millennium Atoll black reef-associated microbial community was enriched in iron-associated virulence genes and known pathogens. Microcosm experiments showed that corals were killed by black reef rubble through microbial activity. Together these results demonstrate that shipwrecks and their associated iron pose significant threats to coral reefs in iron-limited regions.  相似文献   

7.
High islands, with potentially greater habitat diversity, are expected to have greater species richness and diversity compared to low islands, typically atolls and coral islands of lower habitat diversity, within the same geographical area. Patterns of species similarity, richness, and diversity were compared among coral reef fishes between the low island of the Southwest Palau Islands (SWPI), and the low and high islands of the Main Palauan Archipelago (MPA). Data from diurnal visual transects accounted for approximately 64% and 69% of the shorefish faunas known from the SWPI and MPA, respectively. Two distinct fish faunas were representative of low and high islands. The first was confined to the coral islands of the SWPI. The second was partitioned into both low and high islands of the MPA, and Helen Reef, a large atoll in the SWPI. The second type was clustered into atolls, low islands with atoll-like barrier reef systems, a coral island, and three high island systems, one with an extensive barrier reef system. Contrary to the prediction that high islands, with relatively greater habitat diversity, would have greater species richness and diversity, species richness and diversity were greatest at Kossol, a large atoll-like low island locality at the northern end of a high island in the MPA, followed by two atolls, Kayangel (MPA, north of Kossol) and Helen Reef. In contrast, species richness and diversity were lower at high island localities and lowest at small coral islands. These results suggest that habitat diversity for reef fishes increases as a function of increasing area regardless of whether the locality is a high or low island.  相似文献   

8.
In this study, we present exact measures of the number, area, and basic morphometric statistics for every single reef of the Maldivian archipelago, as derived from the interpretation of remotely sensed data collected by the Landsat-7 ETM+ earth-observing satellite sensor. We classified and mapped seven morphological attributes of reefs (six marine habitats and reef-top islands) to 30-m depth at 30×30 m spatial resolution (pixel size) for the entire archipelago. The total archipelagic area (all coral reef and lagoon habitats) of the 16 atolls, five oceanic faros, and four oceanic platform reefs which comprise the Maldives is 21,372.72±1,068.64 km2 (approx. 20% of the Maldives Territorial Sea). A total of 2,041±10 distinct coral reef structures larger than 0.01 km2 occur in the Maldives, covering an area of 4,493.85 km2 (including enclosed reef lagoons and islands) to 30-m depth. Smaller areas of coral reef substratum cover another 19.29 km2, bringing the total area of Maldivian coral reefs to 4,513.14±225.65 km2. Shallow coral platforms thus occupy 21.1% of the total area of the archipelago (0.0052% of the EEZ area of the Maldives). Of these reefs, 538 are rim and oceanic reefs, covering 3,701.93 km2 (82.5% of the total reef area), and 1,503 are patch reefs within the atoll lagoons, covering 791.92 km2 (17.5% of the total reef area). Islands occupy only 5.1% of the total reef area. Mapping the Maldives coral reefs at high spatial resolution is only possible with remote sensing and spatial analysis technologies. These greatly reduce the large uncertainty around current estimates of reef area. Our accurate measure of total reef area is only 50.6% of the current best estimate, a result having significant implications for predictions of the Maldives reef productivity and response to global climate change. Here we present current best practice and compare the methods and measures with previous approaches.  相似文献   

9.
Fish catches from the coral reefs of the Tulear region (southwest Madagascar), are analyzed based on fish landings. This region of the island consists of two barrier reefs, two coral banks, three lagoon reefs and a fringing reef. The total reef area studied was 190 km2. Of the whole fishing area, the reef flat was the most frequently used by fishermen. Line catches per unit efort (CPUE) were stable throughout the eight month sampling period (6 to 8 kg/trip to sea), whereas gillnet and seine catches showed differences between the cold period and the warm period. These results appear to be representative of the artisanal fishery catches in the southwest Indian Ocean. Annual fish yield was estimated at 12 t km-2 yr-1. Comparable yields have been recorded in certain regions of the Indo-Pacific, that have similar ratios of coral reef area to adjacent shallows and similar fishing practices. Reef species (Lethrinidae, Siganidae) dominated the catches. At present, coastal waters of the Tulear region are heavily fished, and the fishermen report a progressive decrease in the average size of fish caught over the last 15 years. Management measures are suggested, based on preliminary findings.  相似文献   

10.
A study of phytoplankton productivity and related parameters was carried out in two fringing and barrier reef systems around Moorea island (Tiahura lagoon) and Tahiti (Vairao lagoon), Society Islands, during July–August 1974.In Tiahura lagoon, which is the narrower and the shallower, phytoplankton standing crop and production are extremely low; photosynthetic assimilation, as measured in situ by the 14C method, ranges from 4 to 27 mg C m?2 day?1, presumably less than in the impoverished open ocean, but it is surprisingly high at a station just outside the barrier reef (645 mg C m?2 day?1) as the result of some island mass effect. As compared to the latter station, the lagoon shows a ten-times increase in particle content and glucose uptake, and a higher percentage of decomposition products of plant pigments. These data support the concept that, in such environments where benthic primary producers prevail, phytoplankton may have lost its ‘usual’ rôle in the aquatic food web.Vairao lagoon, a deeper and wider one, subjected to a greater extent to land fertilization, is more productive (103–420 mg C m?2 day?1). Considering this difference, as well as the considerable range of phytoplankton production in coral reef areas of the world, the need for a trophic classification of such ecosystems is emphasized.  相似文献   

11.
We quantify the relative importance of multi‐scale drivers of reef fish assemblage structure on isolated coral reefs at the intersection of the Indian and Indo‐Pacific biogeographical provinces. Large (>30 cm), functionally‐important and commonly targeted species of fish, were surveyed on the outer reef crest/front at 38 coral reef sites spread across three oceanic coral reef systems (i.e. Christmas Island, Cocos (Keeling) Islands and the Rowley Shoals), in the tropical Indian Ocean (c. 1.126 x 106 km2). The effects of coral cover, exposure, fishing pressure, lagoon size and geographical context, on observed patterns of fish assemblage structure were modelled using Multivariate Regression Trees. Reef fish assemblages were clearly separated in space with geographical location explaining ~53 % of the observed variation. Lagoon size, within each isolated reef system was an equally effective proxy for explaining fish assemblage structure. Among local‐scale variables, ‘distance from port’, a proxy for the influence of fishing, explained 5.2% of total variation and separated the four most isolated reefs from Cocos (Keeling) Island, from reefs with closer boating access. Other factors were not significant. Major divisions in assemblage structure were driven by sister taxa that displayed little geographical overlap between reef systems and low abundances of several species on Christmas Island corresponding to small lagoon habitats. Exclusion of geographical context from the analysis resulted in local processes explaining 47.3% of the variation, highlighting the importance of controlling for spatial correlation to understand the drivers of fish assemblage structure. Our results suggest reef fish assemblage structure on remote coral reef systems in the tropical eastern Indian Ocean reflects a biogeographical legacy of isolation between Indian and Pacific fish faunas and geomorphological variation within the region, more than local fishing pressure or reef condition. Our findings re‐emphasise the importance that historical processes play in structuring contemporary biotic communities.  相似文献   

12.
In 1994 and 1995, 131 visual censuses of reef fishes were made using the stationary sampling method in Courtown, Albuquerque, Serrana and Roncador, four atolls of the Archipelago of San Andrés and Old Providence in the Southwestern Caribbean. Fish species and their abundances were recorded in four geomorphologic zones: lagoon, windward barrier reef, windward terrace and forereef terrace. A total of 98 species were censused; the most abundant were Chromis cyanea (14%), Clepticus parra (14%) and Stegastes partitus (10%). The most abundant families were Pomacentridae (37%), Labridae (28%) and Scaridae (10%). Analysis of similarities showed that differences between zones were greater than differences between atolls, but lagoon and forereef terrace were not significantly different. Cluster and ordination analysis confirmed these results; in addition, the ordination analysis placed the groups according to depth and wave-exposure gradients, suggesting that these two physical variables were responsibles for the clustering. Differences in equitability and species richness appear also due to these variables. Inverse analysis showed in each group few characteristic species, then the differences between zones were due specially to dominance of some species. The dominant trophic categories were planktivorous and herbivorous that were significantly different between zones. In shallow zones (shallow lagoonal patch reefs) and high wave-exposed zones (winward barrier reef) dominated herbivorous fishes, while in deeper zones (terraces and deep lagoonal patch reefs) planktivorous were more abundant.  相似文献   

13.
A comparison of Kenyan reefs of different historical and observed levels of fishing exploitation showed that more exploited reef lagoons had greater sea urchin densities and sizes, fewer and smaller fish and less coral cover. In the most exploited lagoon the biomass of the burrowing sea urchin Echinometra mathaei increased five fold during the previous 15 years. An ecological study of the three most common omnivorous sea urchin species inhabiting hard substrate within these reef lagoons (E. mathaei, Diadema savignyi and D. setosum) suggests that they are ecologically separated by predation and avoid predators and competitors by occupying different size burrows or crevices within the lagoon. Predator removal through fishing activities may result in ecological release of the sea urchins and result in competitive exclusion of weaker competitors. The most exploited reef had a nearly monospecific barren of E. mathaei living outside burrows suggesting that E. mathaei may be the top competitor. Its ecological release appears to lead to a decrease in live coral cover, increased substrate bioerosion and eventually a loss of topographic complexity, species diversity, fish biomass and utilizable fisheries productivity. Data from the outer reef edge were more difficult to interpret but may indicate similar patterns. Within this area, physical stresses such as waves and currents may be a greater controlling force in regulating fishing activities and coral reef community structure.  相似文献   

14.
Summary Givetian to early Carboniferous sediments of South China are characterized by carbonates. Middle and Late Devonian strata are best developed in the Guilin area. Reefs and organic shoals are recorded by various lithofacies types indicating the existence of an extended carbonate platform and a change of the composition of reef communities in time. Starting in the late Devonian, stromatoporoids and corals were replaced by algae that subsequently played an important role together with stromatoporoids, receptaculitids and fasciculate rugose corals in reef communities. In Houshan, 5 km west of Guilin, a coral-bafflestone reef occurs in the Frasnian strata, situated near an offshore algal-stromatoporoid reef. The coral reef was formed in a back-reef area adjacent to the inner platform margin. The coral-bafflestone reef is unique among the late Devonian reefs of South China with regard to the biotic composition. The reef is composed of fasciculate colonies ofSmithiphyllum guilinense n. sp. embedded within in packstones and wackestones. The height of colonies reaches 1 m. The community is low-diverse. The species ofSmithiphyllum occurring in the Frasnian reef complexes of Guilin exhibit a distinct facies control:Smithiphyllum guilinense occurs in or near to margin facies and formed bafflestone, constituting a coral reef whereasSmithiphyllum occidentale Sorauf, 1972 andSmithiphyllum sp.—characterized by small colonies with thin corallites—are restricted to the back-reef and marginal slope facies. The bush-like coral colonies baffled sediments. Algae and stromatoporoids (mainlyStachyodes) are other reef biota. Reef-dwelling organisms are dominated by brachiopods. The reefs are composed from base to top of five lithofacies types: 1) cryptalgal micrite, 2) peloidal packstone, 3) stromatactis limestone, 4) coral-bafflestone, and 5) pseudopeloidal packstone. The reef complex can be subdivided into back-reef subfacies, reef flat and marginal subfacies, and marginal fore-slope subfacies. The Houshan coral-bafflestone reef is not a barrier reef but a coral patch reef located near the inner margin of a carbonate platform.  相似文献   

15.

Most of the atolls found worldwide are under microtidal regimes, and their circulation mechanisms are widely documented and well known. Here, we describe the flushing mechanisms of a small-sized mesotidal atoll, based on water-level, wave and current data obtained during two different periods (total of 60 d). Rocas is the only atoll in the South Atlantic Ocean and is built primarily of coralline algae. Two reef passages connect the atoll lagoon to the ocean. Synchronous current profilers were deployed at the two reef passages, one inside and one outside the atoll, to characterize the influence of tides and waves on the circulation. Results showed that wind waves drove a setup on the exposed side of the atoll and that currents were predominately downwind, causing outflow at both reef passages. Waves breaking on the windward side supplied water to the atoll causing the lagoon water level to rise above ocean water level, driving the outflow. However, unlike microtidal atolls, at Rocas Atoll the water level drops significantly below the reef rim during low tides. This causes the reef rim to act as a barrier to water pumping into the lagoon by waves, resulting in periodic activation of the wave pumping mechanism throughout a tidal cycle. As result, inflow occurs in the wider passage during 27% of each tidal cycle, starting at low tides and reversing direction during mid-flood tide when the water level exceeded approximately 1.6 m (while overtopping the atoll’s rim). Our findings show that tides play a direct role in driving circulation on a mesotidal atoll, not only by modulating wave setup but also by determining the duration of wave pumping into the lagoon.

  相似文献   

16.

Tropical Pacific sea surface temperature is projected to rise an additional 2–3 °C by the end of this century, driving an increase in the frequency and intensity of coral bleaching. With significant global coral reef cover already lost due to bleaching-induced mortality, efforts are underway to identify thermally tolerant coral communities that might survive projected warming. Massive, long-lived corals accrete skeletal bands of anomalously high density in response to episodes of thermal stress. These “stress bands” are potentially valuable proxies for thermal tolerance, but to date their application to questions of community bleaching history has been limited. Ecological surveys recorded bleaching of coral communities across the Palau archipelago during the 1998 and 2010 warm events. Between 2011 and 2015, we extracted skeletal cores from living Porites colonies at 10 sites spanning barrier reef and lagoon environments and quantified the proportion of stress bands present in each population during bleaching years. Across Palau, the prevalence of stress bands tracked the severity of thermal stress, with more stress bands occurring in 1998 (degree heating weeks = 13.57 °C-week) than during the less severe 2010 event (degree heating weeks = 4.86 °C-week). Stress band prevalence also varied by reef type, as more corals on the exposed barrier reef formed stress bands than did corals from sheltered lagoon environments. Comparison of Porites stress band prevalence with bleaching survey data revealed a strong correlation between percent community bleaching and the proportion of colonies with stress bands in each year. Conversely, annual calcification rates did not decline consistently during bleaching years nor did annually resolved calcification histories always track interannual variability in temperature. Our data suggest that stress bands in massive corals contain valuable information about spatial and temporal trends in coral reef bleaching and can aid in conservation efforts to identify temperature-tolerant coral reef communities.

  相似文献   

17.
18.
High photosynthetic benthic primary production (P) represents a key ecosystem service provided by tropical coral reef systems. However, benthic P budgets of specific ecosystem compartments such as macrophyte-dominated reef lagoons are still scarce. To address this, we quantified individual and lagoon-wide net (Pn) and gross (Pg) primary production by all dominant functional groups of benthic primary producers in a typical macrophyte-dominated Caribbean reef lagoon near Puerto Morelos (Mexico) via measurement of O2 fluxes in incubation experiments. The photosynthetically active 3D lagoon surface area was quantified using conversion factors to allow extrapolation to lagoon-wide P budgets. Findings revealed that lagoon 2D benthic cover was primarily composed of sand-associated microphytobenthos (40%), seagrasses (29%) and macroalgae (27%), while seagrasses dominated the lagoon 3D surface area (84%). Individual Pg was highest for macroalgae and scleractinian corals (87 and 86 mmol O2 m−2 specimen area d−1, respectively), however seagrasses contributed highest (59%) to the lagoon-wide Pg. Macroalgae exhibited highest individual Pn rates, but seagrasses generated the largest fraction (51%) of lagoon-wide Pn. Individual R was highest for scleractinian corals and macroalgae, whereas seagrasses again provided the major lagoon-wide share (68%). These findings characterise the investigated lagoon as a net autotrophic coral reef ecosystem compartment revealing similar P compared to other macrophyte-dominated coastal environments such as seagrass meadows and macroalgae beds. Further, high lagoon-wide P (Pg: 488 and Pn: 181 mmol O2 m−2 lagoon area d−1) and overall Pg:R (1.6) indicate substantial benthic excess production within the Puerto Morelos reef lagoon and suggest the export of newly synthesised organic matter to surrounding ecosystems.  相似文献   

19.
The abundance and productivity of benthic microalgae in coral reef sediments are poorly known compared with other, more conspicuous (e.g. coral zooxanthellae, macroalgae) primary producers of coral reef habitats. A survey of the distribution, biomass, and productivity of benthic microalgae on a platform reef flat and in a cross-shelf transect in the southern Great Barrier Reef indicated that benthic microalgae are ubiquitous, abundant (up to 995.0 mg chlorophyll (chl) a m–2), and productive (up to 110 mg O2 m–2 h–1) components of the reef ecosystem. Concentrations of benthic microalgae, expressed as chlorophyll a per surface area, were approximately 100-fold greater than the integrated water column concentrations of microalgae throughout the region. Benthic microalgal biomass was greater on the shallow water platform reef than in the deeper waters of the cross-shelf transect. In both areas the benthic microalgal communities had a similar composition, dominated by pennate diatoms, dinoflagellates, and cyanobacteria. Benthic microalgal populations were potentially nutrient-limited, based on responses to nitrogen and phosphorus enrichments in short-term (7-day) microcosm experiments. Benthic microalgal productivity, measured by O2 evolution, indicated productive communities responsive to light and nutrient availability. The benthic microalgal concentrations observed (92–995 mg chl a m–2) were high relative to other reports, particularly compared with temperate regions. This abundance of productive plants in both reef and shelf sediments in the southern Great Barrier Reef suggests that benthic microalgae are key components of coral reef ecosystems.Communicated by Environmental Editor, B.C. Hatcher  相似文献   

20.
Middleton and Elizabeth Reefs are two mid-latitude, annular reefs within the Lord Howe linear chain of volcanic islands and seamounts in the southwestern Pacific Ocean. Drilling, vibrocoring, seismic profiling, and dating indicate that each has a rim of Holocene reef framework, enclosing a lagoon partly filled by prograding sand sheets composed of fragments of coral, coralline algae, foraminifers, and other skeletal debris. The reefs lie close to the latitudinal limits for coral growth and the reef framework is very porous, dominated by branching rather than massive corals. Coralline algae are the principal binding agent in the upper reef framework. Holocene reef growth began on a foundation of Pleistocene reefal limestone encountered at a depth of 8 m in cores on the windward side of Middleton Reef. Holocene corals became established on this foundation around 6,700 radiocarbon yr B.P., implying little if any lag after inundation of the platform by the post-glacial sea-level rise. Windward reef growth tracked sea-level rise (keep-up mode), and a prominent reef crest was established on both reefs by 5,000 yr B.P. Leeward margins appear to have been characterized by catch-up growth. Development of cays is limited, and has been restricted by the paucity of coarse coralline debris or cemented conglomerate on which islands could become established. The morphology and development of Middleton and Elizabeth Reefs has been similar to that of tropical atolls, although the rate of subsidence appears to have been relatively slow reflecting their position on the margin of the foundered continental crust of the Lord Howe Rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号