共查询到20条相似文献,搜索用时 0 毫秒
1.
Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro 总被引:9,自引:0,他引:9
Kayed R Bernhagen J Greenfield N Sweimeh K Brunner H Voelter W Kapurniotu A 《Journal of molecular biology》1999,287(4):781-796
Amyloid aggregates have been recognized to be a pathological hallmark of several fatal diseases, including Alzheimer's disease, the prion-related diseases, and type II diabetes. Pancreatic amyloidosis is characterized by the deposition of amyloid consisting of islet amyloid polypeptide (IAPP). We followed the steps preceding IAPP insolubilization and amyloid formation in vitro using a variety of biochemical methods, including a filtration assay, far and near-UV circular dichroism (CD) spectropolarimetry, 1-anilino-8-naphthalenesulfonic acid (ANS) binding, and atomic force (AFM) and electron (EM) microscopy. IAPP insolubilization and amyloid formation followed kinetics that were consistent with the nucleation-dependent polymerization mechanism. Nucleation of IAPP amyloid formation with traces of preformed fibrils induced a rapid conformational transition into beta-sheets that subsequently aggregated into insoluble amyloid fibrils. Transition proceeded via a molten globule-like conformeric state with large contents of secondary structure, fluctuating tertiary and quaternary aromatic interactions, and strongly solvent-exposed hydrophobic patches. In the temperature denaturation pathway at 5 microM peptide, we found that this state was mostly populated at about 45 degrees C, and either aggregated rapidly into amyloid by prolonged exposure to this temperature, or melted into denaturated but still structured IAPP, when heated further to 65 degrees C. The state at 45 degrees C was also found to be populated at 4.25 M GdnHCl at 25 degrees C during GdnHCl-induced equilibrium denaturation, and was stable in solution for several hours before aggregating into amyloid fibrils. Our studies suggested that this amyloidogenic state was a self-associated form of an aggregation-prone, partially folded state of IAPP. We propose that this partially folded population and its self-associated forms are in a concentration-dependent equilibrium with a non-amyloidogenic IAPP conformer and may act as early, soluble precursors of beta-sheet and amyloid formation. Our findings on the molecular mechanism of IAPP amyloid formation in vitro should assist in gaining insight into the pathogenesis and inhibition of pancreatic amyloidosis and other amyloid-related diseases. 相似文献
2.
Islet amyloid development in a mouse strain lacking endogenous islet amyloid polypeptide (IAPP) but expressing human IAPP 总被引:3,自引:0,他引:3
Westermark GT Gebre-Medhin S Steiner DF Westermark P 《Molecular medicine (Cambridge, Mass.)》2000,6(12):998-1007
BACKGROUND: Several mouse strains expressing human islet amyloid polypeptide (IAPP) have been created to study development of islet amyloid and its impact on islet cell function. The tendency to form islet amyloid has varied strongly among these strains by factors that have not been elucidated. Because some beta cell granule components are known to inhibit IAPP fibril formation in vitro, we wanted to determine whether a mouse strain expressing human IAPP but lacking the nonamyloidogenic mouse IAPP is more prone to develop islet amyloidosis. MATERIALS AND METHODS: Such a strain was created by cross-breeding a transgenic mouse strain and an IAPP null mouse strain. RESULTS: When fed a fat-enriched diet, male mice expressing only human IAPP developed islet amyloid earlier and to a higher extent than did mice expressing both human and mouse IAPP. Supporting these results, we found that mouse IAPP dose-dependently inhibits formation of fibrils from human IAPP. CONCLUSIONS: Female mice did not develop amyloid deposits, although small extracellular amorphous IAPP deposits were found in some islets. When cultivated in vitro, amyloid deposits occurred within 10 days in islets from either male or female mice expressing only human IAPP. The study shows that formation of islet amyloid may be dependent on the environment, including the presence or absence of fibril inhibitors or promoters. 相似文献
3.
Complement can damage host tissue when overactivated. Evidence of complement self damage exists for Alzheimer disease (AD), age-related macular degeneration, type 1 diabetes mellitus (T1DM), and Parkinson disease (PD). Known complement activators include Abeta, found in AD, and IgG found in T1DM. We compared their complement activating ability in vitro with those of islet amyloid polypeptide (IAPP), which aggregates in the pancreas of T2DM, and alpha-synuclein (alpha-Syn), which aggregates in PD. We found that IAPP and the alternatively spliced alpha-Syn 112 form, but not full-length alpha-Syn 140, activated complement in vitro. Complement activation may contribute to death of insulin-secreting cells in T2DM or to neuronal death in Parkinson disease (PD) and related synucleinopathies where alpha-Syn 112 occurs. This suggests the possibility of anti-inflammatory treatment in these pathologies. It also suggests that blockers of complement activation may be an appropriate therapeutic target for a range of age-related degenerative diseases. 相似文献
4.
《生物化学与生物物理学报:生物膜》2018,1860(9):1734-1740
Islet amyloid polypeptide (IAPP) is a 37 residue intrinsically disordered protein whose aggregation is associated with Type II diabetes. Like most amyloids, it appears that the intermediate aggregates (“oligomers”) of IAPP are more toxic than the mature fibrils, and interaction with the cell membrane is likely to be an integral component of the toxicity. Here we probe the membrane affinity and the conformation of the peptide as a function of its aggregation state. We find that the affinity of the peptide for artificial lipid bilayers is more than 15 times higher in the small oligomeric state (hydrodynamic radius ~ 1.6 nm) compared to the monomeric state (hydrodynamic radius ~ 0.7 nm). Binding with RIN-m5F cell membranes also shows qualitatively similar behavior. The monomeric state, as determined by Forster Resonance Energy Transfer, has a much larger end to end distance than the oligomeric state, suggesting conformational change between the monomers and the oligomers. Raman and Infrared spectroscopic measurements show the presence of considerable alpha helical content in the oligomers, whereas the larger aggregates have largely beta sheet character. Therefore, the conformation of the small oligomers is distinct from both the smaller monomers and the larger oligomers, and this is associated with an enhanced membrane affinity. This provides a possible structural basis for the enhanced toxicity of amyloid oligomers. Such change is also reminiscent of amyloid beta, another aggregation prone amyloidogenic peptide, though the nature of the conformational change is quite different in the two cases. We infer that conformational change underlying oligomer formation is a key factor in determining the enhanced membrane affinity of disease causing oligomers, but the toxic “oligomer fold” may not be universal. 相似文献
5.
The putative hormone islet amyloid polypeptide (IAPP) induces impaired glucose tolerance in cats 总被引:2,自引:0,他引:2
K H Johnson T D O'Brien K Jordan C Betsholtz P Westermark 《Biochemical and biophysical research communications》1990,167(2):507-513
Islet amyloid polypeptide (IAPP) has been implicated by in vitro studies as an inhibitor of insulin-stimulated glucose utilization by skeletal muscle cells and also as an inhibitor of insulin-stimulated insulin secretion by beta cells. Increased expression and production of IAPP by beta cells, as has been suggested to occur in cats with impaired glucose tolerance, could thus contribute substantially to the development of the insulin resistance and impaired insulin release which are the hallmarks of Type 2 diabetes mellitus. The effects of IAPP with respect to glucose metabolism in living animals, however, have not been previously reported. In the present in vivo study we show that synthetic amidated IAPP induced impaired glucose tolerance in each of the 3 cats studied, with dramatic impairment (increases in glucose to T1/2 values of 124% and 234%) in 2 of the 3 cats. Impaired insulin responses were also evident in the 2 cats with the most dramatic states of glucose intolerance. These results provide the most direct evidence to-date that IAPP may have an important role in the development of Type 2 diabetes mellitus. 相似文献
6.
The human islet amyloid polypeptide (IAPP) gene. Organization, chromosomal localization and functional identification of a promoter region 总被引:2,自引:0,他引:2
We report the isolation and characterization of the human gene encoding islet amyloid polypeptide (IAPP). Previously characterized cDNA sequences correspond to three exons of which the first is noncoding. A functional promoter region was identified in the 5' flanking DNA; however, this was farther upstream than expected. Northern blot analysis of human insulinoma RNA revealed three IAPP mRNAs of sizes 1.2, 1.8 and 2.1 kb, in agreement with three polyadenylation signals present in the 3' end of the gene. In situ hybridization to metaphase chromosomes resulted in two distinct peaks on chromosome 12, at 12p12-p13 and 12q13-q14. Southern blot analysis of genomic DNA suggested a single IAPP locus but also indicated the presence of additional homologous sequences in human genomic DNA. 相似文献
7.
Tenidis K Waldner M Bernhagen J Fischle W Bergmann M Weber M Merkle ML Voelter W Brunner H Kapurniotu A 《Journal of molecular biology》2000,295(4):1055-1071
Pancreatic amyloid is found in more than 95 % of type II diabetes patients. Pancreatic amyloid is formed by the aggregation of islet amyloid polypeptide (hIAPP or amylin), which is a 37-residue peptide. Because pancreatic amyloid is cytotoxic, it is believed that its formation is directly associated with the development of the disease. We recently showed that hIAPP amyloid formation follows the nucleation-dependent polymerization mechanism and proceeds via a conformational transition of soluble hIAPP into aggregated beta-sheets. Here, we report that the penta- and hexapeptide sequences, hIAPP(23-27) (FGAIL) and hIAPP(22-27) (NFGAIL) of hIAPP are sufficient for the formation of beta-sheet-containing amyloid fibrils. Although these two peptides differ by only one amino acid residue, they aggregate into completely different fibrillar assemblies. hIAPP(23-27) (FGAIL) fibrils self-assemble laterally into unusually broad ribbons, whereas hIAPP(22-27) (NFGAIL) fibrils coil around each other in a typical amyloid fibril morphology. hIAPP(20-27) (SNNFGAIL) also aggregates into beta-sheet-containing fibrils, whereas no amyloidogenicity is found for hIAPP(24-27) (GAIL), indicating that hIAPP(23-27) (FGAIL) is the shortest fibrillogenic sequence of hIAPP. Insoluble amyloid formation by the partial hIAPP sequences followed kinetics that were consistent with a nucleation-dependent polymerization mechanism. hIAPP(22-27) (NFGAIL), hIAPP(20-27) (SNNFGAIL), and also the known fibrillogenic sequence, hIAPP(20-29) (SNNFGAILSS) exhibited significantly lower kinetic and thermodynamic solubilities than the pentapeptide hIAPP(23-27) (FGAIL). Fibrils formed by all short peptide sequences and also by hIAPP(20-29) were cytotoxic towards the pancreatic cell line RIN5fm, whereas no cytotoxicity was observed for the soluble form of the peptides, a notion that is consistent with hIAPP cytotoxicity. Our results suggest that a penta- and hexapeptide sequence of an appropriate amino acid composition can be sufficient for beta-sheet and amyloid fibril formation and cytotoxicity and may assist in the rational design of inhibitors of pancreatic amyloid formation or other amyloidosis-related diseases. 相似文献
8.
BACKGROUND: Islet amyloid polypeptide (IAPP) is deposited as amyloid in the islets of Langerhans in type 2 diabetes. The mechanism behind the formation of the cytotoxic fibrils is unknown. Islet amyloid develops in a mouse IAPP null mouse strain that expresses human IAPP (+hIAPP/-mIAPP) after 9 months on a high-fat diet. Herein we investigate the effect that individual free fatty acids (FFAs) exert on formation of amyloid-like fibrils from synthetic IAPP and the effects of FFAs on IAPP polymerization in +hIAPP/-mIAPP islets cultivated in vitro. MATERIALS AND METHODS: In the study myristic acid, palmitic acid, stearic acid, oleic acid, and linoleic acid were used together with albumin. Thioflavin T (Th T) assay was used for quantification of amyloid-like fibrils. Islets were isolated from the +hIAPP/-mIAPP transgenic strain and cultured in the presence of the FFAs for 2 days. Immuno-electron microscopy was used for evaluation. RESULTS: The Th T assay showed that all studied FFAs potentiated fibril formation but that myristic acid revealed the highest capacity. In some cells from cultured islets, intragranular aggregates were present. These aggregates had a filamentous appearance and labeled with antibodies against IAPP. In some cells cultured in the presence of linoleic acid, large amounts of intracellular amyloid were present. Earlier, this has not been observed after such a short incubation period. CONCLUSIONS: Our studies suggest that FFAs can potentiate amyloid formation in vitro, probably without being integrated in the fibril. Cultivation of +hIAPP/-mIAPP transgenic mouse islets with FFAs results in altered morphology of the secretory granules with appearance of IAPP- immunoreactive fibrillar material. We suggest that such fibrillar material may seed extracellular amyloid formation after exocytosis. 相似文献
9.
10.
K H Johnson C Wernstedt T D O'Brien P Westermark 《Comparative biochemistry and physiology. B, Comparative biochemistry》1991,98(1):115-119
1. Islet amyloid isolated from the pancreas of a 20-year-old cougar (Felis concolor) was dissolved and purified by gel permeation and reversed phase HPLC for amino acid sequence analysis. 2. N-Terminal amino acid sequence analysis of the purified protein revealed a primary structure (positions 1-28) identical to islet amyloid polypeptide (IAPP) from domesticated cats. 3. IAPP from the cougar, like IAPP from the human and domesticated cat, incorporates an inherently amyloidogenic AILS sequence at positions 25-28. 相似文献
11.
Human islet amyloid polypeptide (hIAPP) is the major component of amyloid plaques found in the pancreatic islets of persons with type 2 diabetes mellitus. HIAPP belongs to the group of amyloidogenic proteins, characterized by their aggregation and deposition as fibrillar amyloid in various body tissues. The aggregation of amyloidogenic proteins is thought to occur via a common pathway, but currently no unifying kinetic model exists. In previous work, we presented a model of amyloid fibril formation formulated from our observations of the aggregation of an amyloidogenic fragment of hIAPP, amino acids 20-29. Our model is based on nucleation-dependent aggregation, modified by the formation of off-pathway hIAPP micelles. In the present study we confirm the presence of peptide micelles, and experimentally determine the critical micelle concentration in solutions of hIAPP fragments using three different techniques: conductivity, pH, and fluorescence. All three techniques yield a critical micelle concentration of 3-3.5 micro M peptide. Furthermore, based on changes in the fluorescence intensity of a labeled peptide fragment as well as a decrease in solution pH as a result of deprotonation of the amino terminus, we conclude that the amino terminus of the fragment undergoes a significant change of environment upon micellization. 相似文献
12.
Disruption of the cellular membrane by the amyloidogenic peptide IAPP (or amylin) has been implicated in beta-cell death during type 2 diabetes. While the structure of the mostly inert fibrillar form of IAPP has been investigated, the structural details of the highly toxic prefibrillar membrane-bound states of IAPP have been elusive. A recent study showed that a fragment of IAPP (residues 1-19) induces membrane disruption to a similar extent as the full-length peptide. However, unlike the full-length IAPP peptide, IAPP(1-19) is conformationally stable in an alpha-helical conformation when bound to the membrane. In vivo and in vitro measurements of membrane disruption indicate the rat version of IAPP(1-19), despite differing from hIAPP(1-19) by the single substitution of Arg18 for His18, is significantly less toxic than hIAPP(1-19), in agreement with the low toxicity of the full-length rat IAPP peptide. To investigate the origin of this difference at the atomic level, we have solved the structures of the human and rat IAPP(1-19) peptides in DPC micelles. While both rat and human IAPP(1-19) fold into similar mostly alpha-helical structures in micelles, paramagnetic quenching NMR experiments indicate a significant difference in the membrane orientation of hIAPP(1-19) and rIAPP(1-19). At pH 7.3, the more toxic hIAPP(1-19) peptide is buried deeper within the micelle, while the less toxic rIAPP(1-19) peptide is located at the surface of the micelle. Deprotonating H18 in hIAPP(1-19) reorients the peptide to the surface of the micelle. This change in orientation is in agreement with the significantly reduced ability of hIAPP(1-19) to cause membrane disruption at pH 6.0. This difference in peptide topology in the membrane may correspond to similar topology differences for the full-length human and rat IAPP peptides, with the toxic human IAPP peptide adopting a transmembrane orientation and the nontoxic rat IAPP peptide bound to the surface of the membrane. 相似文献
13.
Masaki Wakabayashi 《FEBS letters》2009,583(17):2854-36097
Human islet amyloid polypeptide (hIAPP) is the primary component of the amyloid deposits found in the pancreatic islets of patients with type 2 diabetes mellitus. However, it is unknown how amyloid fibrils are formed in vivo. In this study, we demonstrate that gangliosides play an essential role in the formation of amyloid deposits by hIAPP on plasma membranes. Amyloid fibrils accumulated in ganglioside- and cholesterol-rich microscopic domains (‘lipid rafts’). The depletion of gangliosides or cholesterol significantly reduced the amount of amyloid deposited. These results clearly showed that the formation of amyloid fibrils was mediated by gangliosides in lipid rafts. 相似文献
14.
Preparation of synthetic human islet amyloid polypeptide (IAPP) in a stable conformation to enable study of conversion to amyloid-like fibrils 总被引:3,自引:0,他引:3
Human synthetic islet amyloid polypeptide (hIAPP) is rapidly converted to beta-sheet conformation and fibrils in aqueous media. Optimal solubility conditions for hIAPP were determined by circular dichroism spectroscopy and transmission electron microscopy. hIAPP in trifluoroethanol or hexafluoro-2-isopropanol (HFIP) diluted in water or phosphate buffer (PB) exhibited random structure which was converted to beta-sheet and fibrils with time. hIAPP, solubilised in HFIP, filtered and lyophilised remained in stable random structure for up to 7 days in water; in PB, insoluble aggregates precipitated from which protofilaments and fibrils formed with time. This suggests that amorphous aggregates of hIAPP could initiate islet amyloidosis in vivo. 相似文献
15.
M. Denijn R. A. De Weger A. D. M. Van Mansfeld J. A. M. van Unnik C. J. M. Lips 《Histochemistry and cell biology》1992,97(1):33-37
Summary We investigated the localization of IAPP mRNA by means of in situ hybridization in tissue sections of rat pancreas. A 35S-labeled, IAPP-specific DNA probe — hybridized specifically in the islets of Langerhans. This localization was confirmed by immunohistochemical localization of insulin and IAPP polypeptides on adjacent tissue sections. Moreover, combined in situ hybridization of IAPP mRNA and immunohistochemistry of insulin and IAPP polypeptide on the same section, using insulin as specific marker shows the presence of IAPP mRNA in the islets of Langerhans.Abbreviations DNA
Deoxyribonucleic acid
- dpm
Disintegration per minute
- dCTP
Deoxycytidine triphosphate
- EDTA
Ethylene diamine tetraacetic acid
- IAPP
Islet amyloid polypeptide
- PBS
Phosphate buffered saline
- RNA
Ribonucleic acid
- SSC
Standard sodium citrate 相似文献
16.
17.
Y Iwamoto G Inooka N Sakuma I Shiraishi S Kumakura T Awata T Kuzuya 《Biochemical and biophysical research communications》1991,180(3):1513-1517
The effect of islet amyloid polypeptide (IAPP/amylin) on 2-deoxyglucose (2-DG) uptake was studied in isolated mouse pancreatic acini in the absence or presence of insulin. Synthetic rat IAPP-NH2 caused a dose-dependent stimulation of 2-DG uptake by mouse acini with a half-maximal concentration at 70 nM. The increase in 2-DG uptake by 1 microM IAPP-NH2 or 100 nM insulin was 68% or 60% above basal, respectively. In the presence of both 1 microM IAPP-NH2 and 100 nM insulin, the increase in 2-DG uptake was 145% above basal, indicating that the effects of IAPP-NH2 and insulin on 2-DG uptake were additive. The results suggest that IAPP stimulates glucose uptake in mouse acini probably by a different mechanism from that of insulin. 相似文献
18.
Hull RL Watts MR Kodama K Shen ZP Utzschneider KM Carr DB Vidal J Kahn SE 《American journal of physiology. Endocrinology and metabolism》2005,289(4):E703-E709
Genetic background is important in determining susceptibility to metabolic abnormalities such as insulin resistance and beta-cell dysfunction. Islet amyloid is associated with reduced beta-cell mass and function and develops in the majority of our C57BL/6J x DBA/2J (F(1)) male human islet amyloid polypeptide (hIAPP) transgenic mice after 1 yr of increased fat feeding. To determine the relative contribution of each parental strain, C57BL/6J (BL6) and DBA/2J (DBA2), to islet amyloid formation, we studied male hIAPP mice on each background strain (BL6, n = 13; and DBA2 n = 11) and C57BL/6J x DBA/2J F(1) mice (n = 17) on a 9% (wt/wt) fat diet for 1 yr. At the end of 12 mo, islet amyloid deposition was quantified from thioflavin S-stained pancreas sections. The majority of mice in all groups developed islet amyloid (BL6: 91%, F(1): 76%, DBA2: 100%). However, the prevalence (%amyloid-positive islets; BL6: 14 +/- 3%, F(1): 44 +/- 8%, DBA2: 49 +/- 9%, P < 0.05) and severity (%islet area occupied by amyloid; BL6: 0.03 +/- 0.01%, F(1): 9.2 +/- 2.9%, DBA2: 5.7 +/- 2.3%, p < or = 0.01) were significantly lower in BL6 than F(1) and DBA2 mice. Increased islet amyloid severity was negatively correlated with insulin-positive area per islet, in F(1) (r(2) = 0.75, P < 0.001) and DBA2 (r(2) = 0.87, P < 0.001) mice but not BL6 mice (r(2) = 0.07). In summary, the extent of islet amyloid formation in hIAPP transgenic mice is determined by background strain, with mice expressing DBA/2J genes (F(1) and DBA2 mice) being more susceptible to amyloid deposition that replaces beta-cell mass. These findings underscore the importance of genetic and environmental factors in studying metabolic disease. 相似文献
19.
The 37-residue islet amyloid polypeptide (IAPP) is the major protein component of the amyloid deposits found in type-II diabetes. IAPP is stored in a relatively low pH environment in the pancreatic secretory granules prior to its release to the extracellular environment. Human IAPP contains a single histidine at position 18. Aggregation of IAPP is considerably faster at a lower pH (4.0 +/- 0.3) than at high pH (8.8 +/- 0.3), as judged by turbidity and thioflavine-T fluorescence studies. The rate of aggregation at low pH increases drastically in the presence of salt. CD experiments show that the conversion of largely unstructured monomers to beta-sheet-rich structures is faster at high pH. TEM studies show that fibrils are formed at both pH values but are more prevalent at pH 8.8 (+/-0.3). Both the free N terminus of IAPP and His-18 will titrate over the pH range studied. An N-terminal acetylated fragment consisting of residues 8-37 of human IAPP was also studied to isolate contributions from the protonation of His-18. Previous studies have shown that this fragment forms protofibrils that are very similar to those formed by intact IAPP. The effects of varying the protonation state of His-18 in the 8-37 analogue indicate that the rate of aggregation and fibril formation is noticeably faster when His-18 is deprotonated, similar to the wild type. However, the pH-dependent effects are larger for full-length IAPP than for the disulfide-truncated, acetylated analogue. TEM studies indicate differences in the morphology of the deposits formed at high and low pH. These results are discussed in light of recent structural models of IAPP fibrils. 相似文献
20.
K Shiomi M Nakazato M Miyazato K Kangawa H Matsuo S Matsukura 《Biochemical and biophysical research communications》1992,186(2):1065-1073
Using a synthetic N-terminal hexadecapeptide of islet amyloid polypeptide (IAPP), we prepared an antiserum specific for IAPP[1-16] and established an extremely sensitive radioimmunoassay (RIA) for the peptide with a minimum detection level of 0.26 fmol/tube. Since the N-terminal sequence of IAPP is 100% conserved in many mammalian species, the RIA is widely applicable in quantifying their IAPP. Analyses of pancreatic extracts of human and hamster using reverse-phase high performance liquid chromatography coupled with the RIA revealed that almost all pancreatic IAPP consisted of IAPP[1-37]. On the other hand, rat and mouse pancreata contained substantial amounts of IAPP[1-16] and IAPP[1-17] in addition to IAPP[1-37] as a major molecular form. In human plasma, IAPP[1-37] is the major molecular form secreted into the circulation in response to glucose administration. The RIA established in this study is promising in elucidating the physiological functions and the pathophysiological significance of IAPP in diabetes mellitus. 相似文献