首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gordon J  Shapley R 《Spatial Vision》2006,19(2-4):133-146
A gray region can be made to look colored by a colored surround. This phenomenon, chromatic induction, depends on color differences around the boundary of the region. We performed experiments on chromatic induction with small, initially achromatic, targets on nine different colored surrounds ranging in color from blue to red. Using scaling of saturation as our measure of perceived color strength, we found that chromatic induction is at its maximum when the brightness contrast at the boundary between target and surroundings is minimal. This implies that the neural mechanism in the cerebral cortex that mediates the appearance of brightness at a boundary inhibits the activity of chromatic mechanisms at that same boundary. Observers matched the apparent brightness and luminance of each of the colored surrounds. For surround colors where brightness and luminance matches differ, brightness contrast, not luminance contrast, controls chromatic induction. These new findings, taken together with other evidence, require a new theory of color appearance that includes mutually inhibitory interactions between color and brightness mechanisms that are sensing color and brightness contrast at visual boundaries.  相似文献   

2.
The human visual system shows a relatively greater response to low spatial frequencies of chromatic spatial modulation than to luminance spatial modulation. However, previous work has shown that this differential sensitivity to low spatial frequencies is not reflected in any differential luminance and chromatic content of general natural scenes. This is contrary to the prevailing assumption that the spatial properties of human vision ought to reflect the structure of natural scenes. Now, colorimetric measures of scenes suggest that red-green (and perhaps blue-yellow) color discrimination in primates is particularly suited to the encoding of specific scenes: reddish or yellowish objects on a background of leaves. We therefore ask whether the spatial, as well as chromatic, properties of such scenes are matched to the different spatial-encoding properties of color and luminance modulation in human vision. We show that the spatiochromatic properties of a wide class of scenes, which contain reddish objects (e.g., fruit) on a background of leaves, correspond well to the properties of the red-green (but not blue-yellow) systems in human vision, at viewing distances commensurate with typical grasping distance. This implies that the red-green system is particularly suited to encoding both the spatial and the chromatic structure of such scenes.  相似文献   

3.
Attention is drawn to the fact that under normal visual conditions the sensitivity of the receptor units of the visual system are subject to spatial and temporal variations, and that consequently in performing pattern recognition the visual cortex has to discriminate between external luminance structure and internal sensitivity structure. It is suggested that eye movements are the method by which this discrimination is performed. In a simplified model analysis it is shown that eye movements are a suitable mechanism for this discrimination. Implications of this model for detection threshold and stabilized retinal images are discussed. A new interpretation of the adaptation to sine wave grids is given.  相似文献   

4.
We have monitored the development of infant colour vision by measuring chromatic contrast sensitivity and acuity in eight young infants over a period of 6 months. Steady-state visual evoked potentials (VEPS) were recorded in response to both chromatic (red-green) and luminance (red-black or green-black) patterns that were reversed in contrast over time. For most infants, no response could be obtained to chromatic stimuli of any size or contrast before 5 weeks of age, although luminance stimuli of 20% contrast gave reliable responses at that age. When responses to chromatic stimuli first appeared, they could be obtained only with stimuli of very low spatial frequency, 20 times lower than the acuity for luminance stimuli. Both contrast sensitivity and acuity for chromatic stimuli increased steadily, more rapidly than for luminance stimuli. As the spectral selectivities of infant cones are similar to those of adults, the difference in rate of development of luminance and chromatic contrast sensitivity and acuity stimuli probably reflects neural development of the infant colour system.  相似文献   

5.
While some lower vertebrates, such as zebrafish, do not appear to possess anatomically separate pathways of processing visual information (such as M-pathways and P-pathways), it is believed that separate processing of the visual stimulus (such as luminance and chromatic processing) is a basic requirement of vertebrate vision. In this study, spectral sensitivity functions were obtained from electroretinogram responses to heterochromatic flicker photometry stimuli at several flicker rates, including a low flicker rate (2 Hz), in an attempt to predominantly stimulate chromatic processes and a high flicker rate (16 Hz), in an attempt to predominantly stimulate luminance processes. In addition, chromatic adaptation was used to isolate and examine the temporal properties of the different cone-type contributions to the electroretinogram response. Spectral sensitivity functions based on responses to heterochromatic stimuli of a low flicker rate appeared to receive both opponent and nonopponent contributions; however, when the stimulus flicker rate was high, spectral sensitivity appeared to be a function of only nonopponent mechanisms. Also, the differences in cone contributions to the spectral sensitivity functions across the different flicker rates appear to be related to the temporal properties of the cone contributions to the electroretinogram response.  相似文献   

6.
Three-dot alignment discrimination thresholds were determined for blobs with Gaussian spatial and temporal contrast envelopes. The stimuli were presented at detection threshold luminance contrast. Thresholds were determined as a function of the blur parameter of the stimuli. This was done for a range of eccentricities in the visual field (from 45 degrees nasal to 65 degrees temporal). The thresholds were corrected for variations of the stimulus extent with the blur parameter. The results were used to estimate the local spatial scale for three-dot alignment acuity. This was done by a method recently introduced by Watson (1987). It was found that the local spatial scale for three-dot alignment acuity is approximately linearly proportional to eccentricity.  相似文献   

7.

Background

The visual system adjusts to changes in the environment, as well as to changes within the observer, adapting continuously to maintain a match between visual coding and visual environment. We evaluated whether the perception of oriented blur is biased by the native astigmatism, and studied the time course of the after-effects following spectacle correction of astigmatism in habitually non-corrected astigmats.

Methods and Findings

We tested potential shifts of the perceptual judgments of blur orientation in 21 subjects. The psychophysical test consisted on a single interval orientation identification task in order to measure the perceived isotropic point (astigmatism level for which the image did not appear oriented to the subject) from images artificially blurred with constant blur strength (B = 1.5 D), while modifying the orientation of the blur according to the axis of natural astigmatism of the subjects. Measurements were performed after neutral (gray field) adaptation on naked eyes under full correction of low and high order aberrations. Longitudinal measurements (up to 6 months) were performed in three groups of subjects: non-astigmats and corrected and uncorrected astigmats. Uncorrected astigmats were provided with proper astigmatic correction immediately after the first session. Non-astigmats did not show significant bias in their perceived neutral point, while in astigmatic subjects the perceived neutral point was significantly biased, typically towards their axis of natural astigmatism. Previously uncorrected astigmats shifted significantly their perceived neutral point towards more isotropic images shortly (2 hours) after astigmatic correction wear, and, once stabilized, remained constant after 6 months. The shift of the perceived neutral point after correction of astigmatism was highly correlated with the amount of natural astigmatism.

Conclusions

Non-corrected astigmats appear to be naturally adapted to their astigmatism, and astigmatic correction significantly changes their perception of their neutral point, even after a brief period of adaptation.  相似文献   

8.

Background

The image formed by the eye''s optics is inherently blurred by aberrations specific to an individual''s eyes. We examined how visual coding is adapted to the optical quality of the eye.

Methods and Findings

We assessed the relationship between perceived blur and the retinal image blur resulting from high order aberrations in an individual''s optics. Observers judged perceptual blur in a psychophysical two-alternative forced choice paradigm, on stimuli viewed through perfectly corrected optics (using a deformable mirror to compensate for the individual''s aberrations). Realistic blur of different amounts and forms was computer simulated using real aberrations from a population. The blur levels perceived as best focused were close to the levels predicted by an individual''s high order aberrations over a wide range of blur magnitudes, and were systematically biased when observers were instead adapted to the blur reproduced from a different observer''s eye.

Conclusions

Our results provide strong evidence that spatial vision is calibrated for the specific blur levels present in each individual''s retinal image and that this adaptation at least partly reflects how spatial sensitivity is normalized in the neural coding of blur.  相似文献   

9.
Color and luminance contrasts attract independent attention   总被引:2,自引:0,他引:2  
Paying attention can improve vision in many ways, including some very basic functions such as contrast discrimination, a task that probably reflects very early levels of visual processing. Electrophysiological, psychophysical, and imaging studies on humans as well as single recordings in monkey show that attention can modulate the neuronal response at an early stage of visual processing, probably by acting on the response gain. Here, we measure incremental contrast thresholds for luminance and color stimuli to derive the contrast response of early neural mechanisms and their modulation by attention. We show that, for both cases, attention improves contrast discrimination, probably by multiplicatively increasing the gain of the neuronal response to contrast. However, the effects of attention are highly specific to the visual modality: concurrent attention to a competing luminance, but not chromatic pattern, greatly impedes luminance contrast discrimination; and attending to a competing chromatic, but not luminance, task impedes color contrast discrimination. Thus, the effects of attention are highly modality specific, implying separate attentional resources for different fundamental visual attributes at early stages of visual processing.  相似文献   

10.
Current opinion holds that human colour vision is mediated primarily via a colour-opponent pathway that carries information about both wavelength and luminance contrast (type I). However, some authors argue that chromatic sensitivity may be limited by a different geniculostriate pathway, which carries information about wavelength alone (type II). We provide psychophysical evidence that both pathways may contribute to the perception of moving, chromatic targets in humans, depending on the nature of the visual discrimination. In experiment 1, we show that adaptation to drifting, red-green stimuli causes reductions in contrast sensitivity for both the detection and direction discrimination of moving chromatic targets. Importantly, the effects of adaptation are not directionally specific. In experiment 2, we show that adaptation to luminance gratings results in reduced sensitivity for the direction discrimination, but not the detection of moving chromatic targets. We suggest that sensitivity for the direction discrimination of chromatic targets is limited by a colour-opponent pathway that also conveys luminance-contrast information, whereas the detection of such targets is limited by a pathway with access to colour information alone. The properties of these pathways are consistent with the known properties of type-I and type-II neurons of the primate parvocellular lateral geniculate nucleus and their cortical projections. These findings may explain the known differences between detection and direction discrimination thresholds for chromatic targets moving at low to moderate velocities.  相似文献   

11.
We sought to determine the extent to which red-green, colour-opponent mechanisms in the human visual system play a role in the perception of drifting luminance-modulated targets. Contrast sensitivity for the directional discrimination of drifting luminance-modulated (yellow-black) test sinusoids was measured following adaptation to isoluminant red-green sinusoids drifting in either the same or opposite direction. When the test and adapt stimuli drifted in the same direction, large sensitivity losses were evident at all test temporal frequencies employed (1-16 Hz). The magnitude of the loss was independent of temporal frequency. When adapt and test stimuli drifted in opposing directions, large sensitivity losses were evident at lower temporal frequencies (1-4 Hz) and declined with increasing temporal frequency. Control studies showed that this temporal-frequency-dependent effect could not reflect the activity of achromatic units. Our results provide evidence that chromatic mechanisms contribute to the perception of luminance-modulated motion targets drifting at speeds of up to at least 32 degrees s(-1). We argue that such mechanisms most probably lie within a parvocellular-dominated cortical visual pathway, sensitive to both chromatic and luminance modulation, but only weakly selective for the direction of stimulus motion.  相似文献   

12.
Coloured surfaces in the normal environment may be brighter or dimmer than the mean adaptation level. Changes in the firing rate of cells of the parvocellular layers of macaque lateral geniculate nucleus were studied with such stimuli; chromatic mixtures briefly replaced a white adaptation field. This paradigm is therefore one of successive contrast. Families of intensity-response curves for different wavelengths were measured. When taking sections at different luminance ratios through these families of curves, strongly opponent cells displayed spectrally selective responses at low luminance ratios, while weakly opponent cells had higher chromatic thresholds and responded well to stimuli at higher luminance ratios, brighter than the adaptation field. Strength of cone opponency, defined as the weight of the inhibitory cone mechanism relative to the excitatory one, was thus related to the range of intensity in which cells appeared to operate most effectively. S-cone inputs, as tested with lights lying along tritanopic confusion lines, could either be excitatory or inhibitory. Families of curves for different wavelengths can be simulated mathematically for a given cell by a simple model by using known cone absorption spectra. Hyperbolic response functions relate cone absorption to the output signals of the three cone mechanisms, which are assumed to interact linearly. Parameters from the simulation provided estimates of strength of cone opponency and cone sensitivity which were shown to be continuously distributed. Cell activity can be related to cone excitation in a trichromatic colour space with the help of the model, to give an indication of suprathreshold coding of colour and lightness.  相似文献   

13.
Representation of color stimuli in awake macaque primary visual cortex   总被引:5,自引:0,他引:5  
We investigated the responses of single neurons in primary visual cortex (area V1) of awake monkeys to chromatic stimuli. Chromatic tuning properties, determined for homogeneous color patches presented on a neutral gray background, varied strongly between cells. The continuum of preferred chromaticities and tuning widths indicated a distributed representation of color signals in V1. When stimuli were presented on colored backgrounds, chromatic tuning was different in most neurons, and the changes in tuning were consistent with some degree of sensitivity of the neurons to the chromatic contrast between stimulus and background. Quantitatively, the average response changes matched the magnitudes of color induction effects measured in human subjects under corresponding stimulus conditions.  相似文献   

14.
Whether fundamental visual attributes, such as color, motion, and shape, are analyzed separately in specialized pathways has been one of the central questions of visual neuroscience. Although recent studies have revealed various forms of cross-attribute interactions, including significant contributions of color signals to motion processing, it is still widely believed that color perception is relatively independent of motion processing. Here, we report a new color illusion, motion-induced color mixing, in which moving bars, the color of each of which alternates between two colors (e.g., red and green), are perceived as the mixed color (e.g., yellow) even though the two colors are never superimposed on the retina. The magnitude of color mixture is significantly stronger than that expected from direction-insensitive spatial integration of color signals. This illusion cannot be ascribed to optical image blurs, including those induced by chromatic aberration, or to involuntary eye movements of the observer. Our findings indicate that color signals are integrated not only at the same retinal location, but also along a motion trajectory. It is possible that this neural mechanism helps us to see veridical colors for moving objects by reducing motion blur, as in the case of luminance-based pattern perception.  相似文献   

15.
Sensory trade-offs predict signal divergence in Surfperch   总被引:1,自引:0,他引:1  
Unidirectional elaboration of male trait evolution (e.g., larger, brighter males) has been predicted by receiver bias models of sexual selection and empirically tested in a number of different taxa. This study identifies a bidirectional pattern of male trait evolution and suggests that a sensory constraint is driving this divergence. In this system, the inherent trade-off in dichromatic visual detection places limits on the direction that sensory biases may take and thus provides a quantitative test of the sensory drive model. Here I show that sensory systems with trade-offs in detection abilities produce bidirectional biases and that signal design properties match these biases. I combine species-specific measurements and ancestral estimates with visual detection modeling to examine biases in sensory and signaling traits across five fish species occupying optically diverse habitats in the Californian kelp forest. Species-specific divergence in visual pigments correlates with changes in environment and produces different sensory biases--favoring luminance (brightness) detection for some species and chromatic (color) detection for others. Divergence in male signals (spectral reflectance of orange, blue, and silver color elements) is predicted by each species' sensory bias: color divergence favors chromatic detection for species with chromatically biased visual systems, whereas species with luminance sensory biases have signals favoring luminance detection. This quantitative example of coevolution of communication traits varying in a bidirectional pattern governed by the environment is the first demonstration of sensory trade-offs driving signal evolution.  相似文献   

16.
We extend a neural network model, developed to examine neural correlates for the dynamic synthesis of edges from luminance gradients (O?men, 1993), to account for the effects of exposure duration, base blur and contrast on the perceived sharpness of edges. This model of REtino-COrtical Dynamics (RECOD) predicts that (i) a decrease in exposure duration causes an increase in the perceived blur and the blur discrimination threshold for edges, (ii) this increase in perceived blur is more pronounced for sharper edges than for blurred edges, (iii) perceived blur is independent of contrast while the blur discrimination threshold decreases with contrast, (iv) perceived blur increases with increasing base blur while the blur discrimination threshold has a nonmonotonic U-shaped dependence on base blur, (v) the perceived location of an edge shifts progressively towards the low-luminance side of the edge with increasing contrast, and (vi) perceived contrast of suprathreshold stimuli is essentially independent of spatial frequency over a wide range of contrast values. These predictions are shown to be in quantitative agreement with existing psychophysical data from the literature and with data collected on three observers to quantify the effect of exposure duration on perceived blur.  相似文献   

17.
Langley K 《Spatial Vision》2005,18(4):461-481
Following a prolonged period of visual adaptation to a temporally modulated sinusoidal luminance pattern, the threshold contrast of a similar visual pattern is elevated. The adaptive elevation in threshold contrast is selective for spatial frequency, may saturate at low adaptor contrast, and increases as a function of the spatio-temporal frequency of the adapting signal. A model for signal extraction that is capable of explaining these threshold contrast effects of adaptation is proposed. Contrast adaptation in the model is explained by the identification of the parameters of an environmental model: the autocorrelation function of the visualized signal. The proposed model predicts that the adaptability of threshold contrast is governed by unpredicted signal variations present in the visual signal, and thus represents an internal adjustment by the visual system that takes into account these unpredicted signal variations given the additional possibility for signal corruption by additive noise.  相似文献   

18.
Selection for signal efficacy in variable environments may favor color polymorphism, but little is known about this possibility outside of sexual systems. Here we used the color polymorphic orb‐web spider Gasteracantha fornicata, whose yellow‐ or white‐banded dorsal signal attracts dipteran prey, to test the hypothesis that morphs may be tuned to optimize either chromatic or achromatic conspicuousness in their visually noisy forest environments. We used data from extensive observations of naturally existing spiders and precise assessments of visual environments to model signal conspicuousness according to dipteran vision. Modeling supported a distinct bias in the chromatic (yellow morph) or achromatic (white morph) contrast presented by spiders at the times when they caught prey, as opposed to all other times at which they may be viewed. Hence, yellow spiders were most successful when their signal produced maximum color contrast against viewing backgrounds, whereas white spiders were most successful when they presented relatively greatest luminance contrast. Further modeling across a hypothetical range of lure variation confirmed that yellow versus white signals should, respectively, enhance chromatic versus achromatic conspicuousness to flies, in G. fornicata's visual environments. These findings suggest that color polymorphism may be adaptively maintained by selection for conspicuousness within different visual channels in receivers.  相似文献   

19.
The goal of image chromatic adaptation is to remove the effect of illumination and to obtain color data that reflects precisely the physical contents of the scene. We present in this paper an approach to image chromatic adaptation using Neural Networks (NN) with application for detecting--adapting human skin color. The NN is trained on randomly chosen color images containing human subject under various illuminating conditions, thereby enabling the model to dynamically adapt to the changing illumination conditions. The proposed network predicts directly the illuminant estimate in the image so as to adapt to human skin color. The comparison of our method with Gray World, White Patch and NN on White Patch methods for skin color stabilization is presented. The skin regions in the NN stabilized images are successfully detected using a computationally inexpensive thresholding operation. We also present results on detecting skin regions on a data set of test images. The results are promising and suggest a new approach for adapting human skin color using neural networks.  相似文献   

20.
Color ornaments are often viewed as products of countervailing sexual and natural selection, because more colorful, more attractive individuals may also be more conspicuous to predators. However, while evidence for such countervailing selection exists for vertebrate color ornaments (e.g., Trinidadian guppies), similar studies have yet to be reported in invertebrates. Indeed, evidence for female mate choice based on extant variation in male coloration is limited in invertebrates, and researchers have not explicitly asked whether more attractive males are also more conspicuous to predators. Here we provide evidence that more chromatic male cabbage white butterflies (Pieris rapae) are more attractive to females but should also be more conspicuous to predators. Female P. rapae preferentially mate with more chromatic males when choosing from populations of males with naturally occurring or commensurate, experimentally induced color variation. Mathematical models of female color vision confirm that females should be able to discriminate color differences between prospective mates. Further, chromatic and luminance contrast scores from female visual system models better predicted male mating success than did measures of male color derived more directly from color spectra. Last, models of avian color vision suggest that preferred males should be more conspicuous to known avian predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号