首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lactoperoxidase is an enzyme that contributes to the antimicrobial defense in secretory fluids and that has attracted interest as a potential biopreservative for foods and other perishable products. Its antimicrobial activity is based on the formation of hypothiocyanate (OSCN-) from thiocyanate (SCN-), using H2O2 as an oxidant. To gain insight into the antibacterial mode of action of the lactoperoxidase enzyme system, we generated random transposon insertion mutations in Escherichia coli MG1655 and screened the resultant mutants for an altered tolerance of bacteriostatic concentrations of this enzyme system. Out of the ca. 5,000 mutants screened, 4 showed significantly increased tolerance, and 2 of these had an insertion, one in the waaQ gene and one in the waaO gene, whose products are involved in the synthesis of the core oligosaccharide moiety of lipopolysaccharides. Besides producing truncated lipopolysaccharides and displaying hypersensitivity to novobiocin and sodium dodecyl sulfate (SDS), these mutants were also shown by urea-SDS-polyacrylamide gel electrophoresis analysis to have reduced amounts of porins in their outer membranes. Moreover, they showed a reduced degradation of p-nitrophenyl phosphate and an increased resistance to ampicillin, two indications of a decrease in outer membrane permeability for small hydrophilic solutes. Additionally, ompC and ompF knockout mutants displayed levels of tolerance to the lactoperoxidase system similar to those displayed by the waa mutants. These results suggest that mutations which reduce the porin-mediated outer membrane permeability for small hydrophilic molecules lead to increased tolerance to the lactoperoxidase enzyme system because of a reduced uptake of OSCN-.  相似文献   

2.
To the best of our knowledge, this is the first report on the structure of product-inhibited mammalian peroxidase. Lactoperoxidase is a heme containing an enzyme that catalyzes the inactivation of a wide range of microorganisms. In the presence of hydrogen peroxide, it preferentially converts thiocyanate ion into a toxic hypothiocyanate ion. Samples of bovine lactoperoxidase containing thiocyanate (SCN) and hypothiocyanate (OSCN) ions were purified and crystallized. The structure was determined at 2.3-Å resolution and refined to Rcryst and Rfree factors of 0.184 and 0.221, respectively. The determination of structure revealed the presence of an OSCN ion at the distal heme cavity. The presence of OSCN ions in crystal samples was also confirmed by chemical and spectroscopic analysis. The OSCN ion interacts with the heme iron, Gln-105 Nɛ1, His-109 Nɛ2, and a water molecule W96. The sulfur atom of the OSCN ion forms a hypervalent bond with a nitrogen atom of the pyrrole ring D of the heme moiety at an S–N distance of 2.8 Å. The heme group is covalently bound to the protein through two ester linkages involving carboxylic groups of Glu-258 and Asp-108 and the modified methyl groups of pyrrole rings A and C, respectively. The heme moiety is significantly distorted from planarity, whereas pyrrole rings A, B, C, and D are essentially planar. The iron atom is displaced by ≈0.2 Å from the plane of the heme group toward the proximal site. The substrate channel resembles a long tunnel whose inner walls contain predominantly aromatic residues such as Phe-113, Phe-239, Phe-254, Phe-380, Phe-381, Phe-422, and Pro-424. A phosphorylated Ser-198 was evident at the surface, in the proximity of the calcium-binding channel.  相似文献   

3.
The enzyme lactoperoxidase is part of the innate immune system in vertebrates and owes its antimicrobial activity to the formation of oxidative reaction products from various substrates. In a previous study, we have reported that, with thiocyanate as a substrate, the lactoperoxidase system elicits a distinct stress response in Escherichia coli MG1655. This response is different from but partly overlapping with the stress responses to hydrogen peroxide and to superoxide. In the current work, we constructed knockouts in 10 lactoperoxidase system-inducible genes to investigate their role in the tolerance of E. coli MG1655 to this antimicrobial system. Five mutations resulted in a slightly increased sensitivity, but one mutation (corA) caused hypersensitivity to the lactoperoxidase system. This hypersensitive phenotype was specific to the lactoperoxidase system, since neither the sensitivity to hydrogen peroxide nor to the superoxide generator plumbagin was affected in the corA mutant. Salmonella enterica serovar Typhimurium corA had a similar phenotype. Although corA encodes an Mg2+ transporter and at least three other inducible open reading frames belonged to the Mg2+ regulon, repression of the Mg stimulon by Mg2+ did not change the lactoperoxidase sensitivity of either the wild-type or corA mutant. Prior exposure to 0.3 mM Ni2+, which is also transported by CorA, strongly sensitized MG1655 but not the corA mutant to the lactoperoxidase system. Furthermore, this Ni2+-dependent sensitization was suppressed by the CorA-specific inhibitor Co(III) hexaammine. These results indicate that CorA affects the lactoperoxidase sensitivity of E. coli by modulating the cytoplasmic concentrations of transition metals that enhance the toxicity of the lactoperoxidase system.  相似文献   

4.
Since NO3 availability in the rooting medium seriously limits symbiotic N2 fixation by soybean (Glycine max [L.] Merr.), studies were initiated to select nodulation mutants which were more tolerant to NO3 and were adapted to the Midwest area of the United States. Three independent mutants were selected in the M2 generation from ethyl methanesulfonate or N-nitroso-N-methylurea mutagenized Williams seed. All three mutants (designated NOD1-3, NOD2-4, and NOD3-7) were more extensively nodulated (427 to 770 nodules plant−1) than the Williams parent (187 nodules plant−1) under zero-N growth conditions. This provided evidence that the mutational event(s) affected autoregulatory control of nodulation. Moreover, all three mutants were partially tolerant to NO3; each retained greater acetylene reduction activity when grown hydroponically with 15 millimolar NO3 than did Williams at 1.5 millimolar NO3. The NO3 tolerance did not appear to be related to an altered ability to take up or metabolize NO3, based on solution NO3 depletion and on in vivo nitrate reductase assays. Enhanced nodulation appeared to be controlled by the host plant, being consistent across four Bradyrhizobium japonicum strains tested. In general, the mutant lines produced less dry weight than the control, with root dry weights being more affected than shoot dry weights. The nodulation trait has been stable through the M5 generation in all three mutants.  相似文献   

5.
This study examined the bioenergetics of Listeria monocytogenes, induced to an acid tolerance response (ATR). Changes in bioenergetic parameters were consistent with the increased resistance of ATR-induced (ATR+) cells to the antimicrobial peptide nisin. These changes may also explain the increased resistance of L. monocytogenes to other lethal factors. ATR+ cells had lower transmembrane pH (ΔpH) and electric potential (Δψ) than the control (ATR) cells. The decreased proton motive force (PMF) of ATR+ cells increased their resistance to nisin, the action of which is enhanced by energized membranes. Paradoxically, the intracellular ATP levels of the PMF-depleted ATR+ cells were ~7-fold higher than those in ATR cells. This suggested a role for the FoF1 ATPase enzyme complex, which converts the energy of ATP hydrolysis to PMF. Inhibition of the FoF1 ATPase enzyme complex by N′-N′-1,3-dicyclohexylcarbodiimide increased ATP levels in ATR but not in ATR+ cells, where ATPase activity was already low. Spectrometric analyses (surface-enhanced laser desorption ionization-time of flight mass spectrometry) suggested that in ATR+ listeriae, the downregulation of the proton-translocating c subunit of the FoF1 ATPase was responsible for the decreased ATPase activity, thereby sparing vital ATP. These data suggest that regulation of FoF1 ATPase plays an important role in the acid tolerance response of L. monocytogenes and in its induced resistance to nisin.  相似文献   

6.
Achromobacter denitrificans YD35 is an NO2-tolerant bacterium that expresses the aconitase genes acnA3, acnA4, and acnB, of which acnA3 is essential for growth tolerance against 100 mm NO2. Atmospheric oxygen inactivated AcnA3 at a rate of 1.6 × 10−3 min−1, which was 2.7- and 37-fold lower compared with AcnA4 and AcnB, respectively. Stoichiometric titration showed that the [4Fe-4S]2+ cluster of AcnA3 was more stable against oxidative inactivation by ferricyanide than that of AcnA4. Aconitase activity of AcnA3 persisted against high NO2 levels that generate reactive nitrogen species with an inactivation rate constant of k = 7.8 × 10−3 min−1, which was 1.6- and 7.8-fold lower than those for AcnA4 and AcnB, respectively. When exposed to NO2, the acnA3 mutant (AcnA3Tn) accumulated higher levels of cellular citrate compared with the other aconitase mutants, indicating that AcnA3 is a major producer of cellular aconitase activity. The extreme resistance of AcnA3 against oxidation and reactive nitrogen species apparently contributes to bacterial NO2 tolerance. AcnA3Tn accumulated less cellular NADH and ATP compared with YD35 under our culture conditions. The accumulation of more NO by AcnA3Tn suggested that NADH-dependent enzymes detoxify NO for survival in a high NO2 milieu. This novel aconitase is distributed in Alcaligenaceae bacteria, including pathogens and denitrifiers, and it appears to contribute to a novel NO2 tolerance mechanism in this strain.  相似文献   

7.
Twelve Tn5-induced mutants of Bradyrhizobium japonicum unable to grow chemoautotrophically with CO2 and H2 (Aut) were isolated. Five Aut mutants lacked hydrogen uptake activity (Hup). The other seven Aut mutants possessed wild-type levels of hydrogen uptake activity (Hup+), both in free-living culture and symbiotically. Three of the Hup mutants lacked hydrogenase activity both in free-living culture and as nodule bacteroids. The other two mutants were Hup only in free-living culture. The latter two mutants appeared to be hypersensitive to repression by oxygen, since Hup activity could be derepressed under 0.4% O2. All five Hup mutants expressed both ex planta and symbiotic nitrogenase activities. Two of the seven Aut Hup+ mutants expressed no free-living nitrogenase activity, but they did express it symbiotically. These two strains, plus one other Aut Hup+ mutant, had CO2 fixation activities 20 to 32% of the wild-type level. The cosmid pSH22, which was shown previously to contain hydrogenase-related genes of B. japonicum, was conjugated into each Aut mutant. The Aut Hup mutants that were Hup both in free-living culture and symbiotically were complemented by the cosmid. None of the other mutants was complemented by pSH22. Individual subcloned fragments of pSH22 were used to complement two of the Hup mutants.  相似文献   

8.
A fraction of otherwise antimicrobial-sensitive Bacillus subtilis cells, called persisters, are phenotypically tolerant of antimicrobial treatment. We report that, independently of B. subtilis'' growth phase, transient ζ toxin expression induces a dormant state and alters cellular responses so that cells are more sensitive to antimicrobials with different modes of action. This outcome is modulated by fine tuning (p)ppGpp and GTP levels: i) in the presence of low “dysregulated” (p)ppGpp levels (as in relA cells) hyper-tolerance to both toxin and antimicrobials was observed; ii) physiological or low (p)ppGpp levels (as in the wild-type, sasA , sasB and relA sasA context) show a normal toxin and antimicrobial tolerance; and iii) lower levels (in relA sasB ) or absence of (p)ppGpp (in the relA sasA sasB context), in concert with elevated GTP levels, potentiate the efficacy of both toxin and antimicrobial action, rendering tolerance vulnerable to eradication.  相似文献   

9.
Elevated CO2 can protect plants from heat stress (HS); however, the underlying mechanisms are largely unknown. Here, we used a set of Arabidopsis mutants such as salicylic acid (SA) signaling mutants nonexpressor of pathogenesis-related gene 1 (npr1-1 and npr1-5) and heat-shock proteins (HSPs) mutants (hsp21 and hsp70-1) to understand the requirement of SA signaling and HSPs in elevated CO2-induced HS tolerance. Under ambient CO2 (380 µmol mol−1) conditions, HS (42°C, 24 h) drastically decreased maximum photochemical efficiency of PSII (Fv/Fm) in all studied plant groups. Enrichment of CO2 (800 µmol mol−1) with HS remarkably increased the Fv/Fm value in all plant groups except hsp70-1, indicating that NPR1-dependent SA signaling is not involved in the elevated CO2-induced HS tolerance. These results also suggest an essentiality of HSP70-1, but not HSP21 in elevated CO2-induced HS mitigation.  相似文献   

10.
The adhesion of a recently described species, Acinetobacter venetianus VE-C3 (F. Di Cello, M. Pepi, F. Baldi, and R. Fani, Res. Microbiol. 148:237–249, 1997), to diesel fuel (a mixture of C12 to C28 n-alkanes) and n-hexadecane was studied and compared to that of Acinetobacter sp. strain RAG-1, which is known to excrete the emulsifying lipopolysaccharide, emulsan. Oxygen consumption rates, biomass, cell hydrophobicity, electrophoretic mobility, and zeta potential were measured for the two strains. The dropping-mercury electrode (DME) was used as an in situ adhesion sensor. In seawater, RAG-1 was hydrophobic, with an electrophoretic mobility (μ) of −0.38 × 10−8 m2 V−1 s−1 and zeta potential (ζ) of −4.9 mV, while VE-C3 was hydrophilic, with μ of −0.81 × 10−8 m2 V−1 s−1 and ζ of −10.5 mV. The microbial adhesion to hydrocarbon (MATH) test showed that RAG-1 was always hydrophobic whereas the hydrophilic VE-C3 strain became hydrophobic only after exposure to n-alkanes. Adhesion of VE-C3 cells to diesel fuel was partly due to the production of capsular polysaccharides (CPS), which were stained with the lectin concanavalin A (ConA) conjugated to fluorescein isothiocyanate and observed in situ by confocal microscopy. The emulsan from RAG-1, which was negative to ConA, was stained with Nile Red fluorochrome instead. Confocal microscope observations at different times showed that VE-C3 underwent two types of adhesion: (i) cell-to-cell interactions, preceding the cell adhesion to the n-alkane, and (ii) incorporation of nanodroplets of n-alkane into the hydrophilic CPS to form a more hydrophobic polysaccharide–n-alkane matrix surrounding the cell wall. The incorporation of n-alkanes as nanodroplets into the CPS of VE-C3 cells might ensure the partitioning of the bulk apolar phase between the aqueous medium and the outer cell membrane and thus sustain a continuous growth rate over a prolonged period.  相似文献   

11.
Seven mutants of Chlorella pyrenoidosa (Emerson strain 3) impaired for sulfate utilization have been isolated after treatment of the wild-type organism with nitrosoguanidine by replica plating on media containing thiosulfate and l-methionine. These mutants fall into three classes based on their ability to grow on sulfate, accumulate compounds labeled from sulfate-35S, and reduce adenosine 3′-phosphate 5′-phosphosulfate-35S (PAPS-35S) to thiosulfate-35S. Mutant Sat2 cannot grow on sulfate, but it accumulates thiosulfate-35S and homocysteic acid-35S from sulfate-35S in vivo. In addition, extracts of mutant Sat2 reduce PAPS-35S to thiosulfate-35S, indicating the possession of enzyme fractions S and A, both of which are required for thiosulfate formation. Mutants Sat1, Sat3, Sat4, Sat5, and Sat6 cannot grow on sulfate, and their extracts lack the ability to reduce PAPS-35S to thiosulfate-35S. Mutant Sat7R1, a probable revertant, can grow on sulfate but still lacks the ability to reduce PAPS-35S to thiosulfate-35S in vitro. Complementation experiments in vitro show that the block in formation of acid-volatile radioactivity in every case is due to the absence of activity associated with fraction S. All mutants can grow on thiosulfate and all possess the activating enzymes which convert sulfate to PAPS. Through a comparison of nutritional and enzymatic characteristics, the first outlines of a branched and complicated pathway for sulfate reduction in Chlorella are beginning to emerge.  相似文献   

12.
We identified the extremely nitrite-tolerant bacterium Achromobacter denitrificans YD35 that can grow in complex medium containing 100 mM nitrite (NO2) under aerobic conditions. Nitrite induced global proteomic changes and upregulated tricarboxylate (TCA) cycle enzymes as well as antioxidant proteins in YD35. Transposon mutagenesis generated NO2-hypersensitive mutants of YD35 that had mutations at genes for aconitate hydratase and α-ketoglutarate dehydrogenase in the TCA cycle and a pyruvate dehydrogenase (Pdh) E1 component, indicating the importance of TCA cycle metabolism to NO2 tolerance. A mutant in which the pdh gene cluster was disrupted (Δpdh mutant) could not grow in the presence of 100 mM NO2. Nitrite decreased the cellular NADH/NAD+ ratio and the cellular ATP level. These defects were more severe in the Δpdh mutant, indicating that Pdh contributes to upregulating cellular NADH and ATP and NO2-tolerant growth. Exogenous acetate, which generates acetyl coenzyme A and then is metabolized by the TCA cycle, compensated for these defects caused by disruption of the pdh gene cluster and those caused by NO2. These findings demonstrate a link between NO2 tolerance and pyruvate/acetate metabolism through the TCA cycle. The TCA cycle mechanism in YD35 enhances NADH production, and we consider that this contributes to a novel NO2-tolerating mechanism in this strain.  相似文献   

13.
Furfural is an inhibitory side product formed during the depolymerization of hemicellulose with mineral acids. In Escherichia coli, furfural tolerance can be increased by expressing the native fucO gene (encoding lactaldehyde oxidoreductase). This enzyme also catalyzes the NADH-dependent reduction of furfural to the less toxic alcohol. Saturation mutagenesis was combined with growth-based selection to isolate a mutated form of fucO that confers increased furfural tolerance. The mutation responsible, L7F, is located within the interfacial region of FucO homodimers, replacing the most abundant codon for leucine with the most abundant codon for phenylalanine. Plasmid expression of the mutant gene increased FucO activity by more than 10-fold compared to the wild-type fucO gene and doubled the rate of furfural metabolism during fermentation. No inclusion bodies were evident with either the native or the mutated gene. mRNA abundance for the wild-type and mutant fucO genes differed by less than 2-fold. The Km (furfural) for the mutant enzyme was 3-fold lower than that for the native enzyme, increasing efficiency at low substrate concentrations. The L7F mutation is located near the FucO N terminus, within the ribosomal binding region associated with translational initiation. Free-energy calculations for mRNA folding in this region (nucleotides −7 to +37) were weak for the native gene (−4.1 kcal mol−1) but weaker still for the fucO mutant (−1.0 to −0.1 kcal mol−1). The beneficial L7F mutation in FucO is proposed to increase furfural tolerance by improving gene expression and increasing enzyme effectiveness at low substrate levels.  相似文献   

14.
This study investigated the functional roles of the N-terminal Ca2+ ion-binding sites, in terms of enzyme catalysis and stability, of peptidylarginine deiminase 4 (PAD4). Amino acid residues located in the N-terminal Ca2+-binding site of PAD4 were mutated to disrupt the binding of Ca2+ ions. Kinetic data suggest that Asp155, Asp157 and Asp179, which directly coordinate Ca3 and Ca4, are essential for catalysis in PAD4. For D155A, D157A and D179A, the k cat/K m,BAEE values were 0.02, 0.63 and 0.01 s−1mM−1 (20.8 s−1mM−1 for WT), respectively. Asn153 and Asp176 are directly coordinated with Ca3 and indirectly coordinated with Ca5 via a water molecule. However, N153A displayed low enzymatic activity with a k cat value of 0.3 s−1 (13.3 s−1 for wild-type), whereas D176A retained some catalytic power with a k cat of 9.7 s−1. Asp168 is the direct ligand for Ca5, and Ca5 coordination by Glu252 is mediated by two water molecules. However, mutation of these two residues to Ala did not cause a reduction in the k cat/K m,BAEE values, which indicates that the binding of Ca5 may not be required for PAD4 enzymatic activity. The possible conformational changes of these PAD4 mutants were examined. Thermal stability analysis of the PAD4 mutants in the absence or presence of Ca2+ indicated that the conformational stability of the enzyme is highly dependent on Ca2+ ions. In addition, the results of urea-induced denaturation for the N153, D155, D157 and D179 series mutants further suggest that the binding of Ca2+ ions in the N-terminal Ca2+-binding site stabilizes the overall conformational stability of PAD4. Therefore, our data strongly suggest that the N-terminal Ca2+ ions play critical roles in the full activation of the PAD4 enzyme.  相似文献   

15.
P-solubilizing microorganisms are a promising alternative for a sustainable use of P against a backdrop of depletion of high-grade rock phosphates (RPs). Nevertheless, toxic elements present in RPs, such as fluorine, can negatively affect microbial solubilization. Thus, this study aimed at selecting Aspergillus niger mutants efficient at P solubilization in the presence of fluoride (F). The mutants were obtained by exposition of conidia to UV light followed by screening in a medium supplemented with Ca3(PO4)2 and F. The mutant FS1-555 showed the highest solubilization in the presence of F, releasing approximately 70% of the P contained in Ca3(PO4)2, a value 1.7 times higher than that obtained for the wild type (WT). The mutant FS1-331 showed improved ability of solubilizing fluorapatites, increasing the solubilization of Araxá, Catalão, and Patos RPs by 1.7, 1.6, and 2.5 times that of the WT, respectively. These mutants also grew better in the presence of F, indicating that mutagenesis allowed the acquisition of F tolerance. Higher production of oxalic acid by FS1-331 correlated with its improved capacity for RP solubilization. This mutant represents a significant improvement and possess a high potential for application in solubilization systems with fluoride-rich phosphate sources.  相似文献   

16.
The H+-ATPase of tonoplast vesicles isolated from red beet (Beta vulgaris L.) storage tissue was studied with respect to the kinetic effects of Cl and NO3. N-Ethylmaleimide (NEM) was employed as a probe to investigate substrate binding and gross conformational changes of the enzyme. Chloride decreased the Km of the enzyme for ATP but caused relatively little alteration of the Vmax. Nitrate increased Km only. Michaelis-Menten kinetics applied throughout with respect to ATP concentration. Nitrate yielded similar kinetics of inhibition in both the presence and absence of Cl. Other monovalent anions that specifically increased the Km of the ATPase for ATP were, in order of increasing Ki, SCN, ClO4, and ClO3. Sulfate, although inhibitory, manifested noncompetitive kinetics with respect to ATP concentration. ADP, like NO3, was a competitive inhibitor of the ATPase but ADP and NO3 did not interact cooperatively nor did either interfere with the inhibitory action of the other. It is concluded that NO3 does not show competitive kinetics because of its stereochemical similarity to the terminal phosphoryl group of ATP. NEM was an irreversible inhibitor of the tonoplast ATPase. Both Mg·ADP and Mg·ATP protected the enzyme from inactivation by NEM but Mg·ADP was the more potent of the two. Chloride and NO3 exerted little or no effect on the protective actions of Mg·ADP and Mg·ATP suggesting that neither Cl nor NO3 are involved in substrate binding.  相似文献   

17.
Spontaneous mutants of Clostridium acetobutylicum NRRL B643 that were resistant to allyl alcohol (AA) were selected and characterized. These mutants contained 10- to 100-fold reduced activities of butanol and ethanol alcohol dehydrogenase. The AA mutants formed two groups and produced no ethanol. Type 1 AA mutants produced significant amounts of a new solvent, butyraldehyde, and contained normal levels of the coenzyme A-dependent butyraldehyde dehydrogenase (BAD). Type 2 AA mutants produced no significant butyraldehyde and lower levels of all solvents, and they contained 45- to 100-fold lower activity levels of BAD. Following ethyl methanesulfonate mutagenesis, low-acid-producing (Acid) mutants were selected and characterized as superinduced solvent producers, yielding more than 99% of theoretical glucose carbon as solvents and only small amounts of acetate and butyrate. Following ethyl methanesulfonate mutagenesis, 13 sporulation-negative (Spo) mutants were characterized; and 3 were found to produce only butyrate and acetate, a minor amount of acetone, and no alcohols. These Spo mutants contained reduced butanol dehydrogenase activity and no BAD enzyme activity. The data support the view that the type 2 AA, the Acid, and the Spo mutants somehow alter normal regulated expression of the solvent pathway in C. acetobutylicum.  相似文献   

18.
Small hydrophilic antibiotics traverse the outer membrane of Gram-negative bacteria through porin channels. Large lipophilic agents traverse the outer membrane through its bilayer, containing a majority of lipopolysaccharides in its outer leaflet. Genes controlled by the two-component regulatory system PhoPQ modify lipopolysaccharides. We isolate lipopolysaccharides from isogenic mutants of Salmonella sp., one lacking the modification, the other fully modified. These lipopolysaccharides were reconstituted as monolayers at the air-water interface, and their properties, as well as their interaction with a large lipophilic drug, novobiocin, was studied. X-ray reflectivity showed that the drug penetrated the monolayer of the unmodified lipopolysaccharides reaching the hydrophobic region, but was prevented from this penetration into the modified lipopolysaccharides. Results correlate with behavior of bacterial cells, which become resistant to antibiotics after PhoPQ-regulated modifications. Grazing incidence x-ray diffraction showed that novobiocin produced a striking increase in crystalline coherence length, and the size of the near-crystalline domains.  相似文献   

19.
1. The influence of Cl, Br, NO3 and F ions on the visible-absorption spectrum of deionized aspartate aminotransferase was investigated. 2. Except for F, these anions caused an increase of the extinction at 430mμ with a concomitant decrease of that at 362mμ. 3. The affinity constants for Cl and NO3 ions were calculated by a procedure based on the assumption that the anion stabilizes the protonated form of the enzyme chromophore (λmax. 430mμ). 4. The true pK of the chromophore of the enzyme was found to be 5·25.  相似文献   

20.
Deliberate and natural outbreaks of infectious disease underscore the necessity of effective vaccines and antimicrobial/antiviral therapeutics. The prevalence of antibiotic resistant strains and the ease by which antibiotic resistant bacteria can be intentionally engineered further highlights the need for continued development of novel antibiotics against new bacterial targets. Isoprenes are a class of molecules fundamentally involved in a variety of crucial biological functions. Mammalian cells utilize the mevalonic acid pathway for isoprene biosynthesis, whereas many bacteria utilize the methylerythritol phosphate (MEP) pathway, making the latter an attractive target for antibiotic development. In this report we describe the cloning and characterization of Francisella tularensis MEP synthase, a MEP pathway enzyme and potential target for antibiotic development. In vitro growth-inhibition assays using fosmidomycin, an inhibitor of MEP synthase, illustrates the effectiveness of MEP pathway inhibition with F. tularensis. To facilitate drug development, F. tularensis MEP synthase was cloned, expressed, purified, and characterized. Enzyme assays produced apparent kinetic constants (KMDXP = 104 µM, KMNADPH = 13 µM, kcatDXP = 2 s−1, kcatNADPH = 1.3 s−1), an IC50 for fosmidomycin of 247 nM, and a Ki for fosmidomycin of 99 nM. The enzyme exhibits a preference for Mg+2 as a divalent cation. Titanium dioxide chromatography-tandem mass spectrometry identified Ser177 as a site of phosphorylation. S177D and S177E site-directed mutants are inactive, suggesting a mechanism for post-translational control of metabolic flux through the F. tularensis MEP pathway. Overall, our study suggests that MEP synthase is an excellent target for the development of novel antibiotics against F. tularensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号