首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The SCF(FBW7) ubiquitin ligase degrades proteins involved in cell division, growth, and differentiation and is commonly mutated in cancers. The Fbw7 locus encodes three protein isoforms that occupy distinct subcellular localizations, suggesting that each has unique functions. We used gene targeting to create isoform-specific Fbw7-null mutations in human cells and found that the nucleoplasmic Fbw7alpha isoform accounts for almost all Fbw7 activity toward cyclin E, c-Myc, and sterol regulatory element binding protein 1. Cyclin E sensitivity to Fbw7 varies during the cell cycle, and this correlates with changes in cyclin E-cyclin-dependent kinase 2 (CDK2)-specific activity, cyclin E autophosphorylation, and CDK2 inhibitory phosphorylation. These data suggest that oscillations in cyclin E-CDK2-specific activity during the cell cycle regulate the timing of cyclin E degradation. Moreover, they highlight the utility of adeno-associated virus-mediated gene targeting in functional analyses of complex loci.  相似文献   

2.
Notch signaling involves the proteolytic cleavage of the transmembrane Notch receptor after binding to its transmembrane ligands. Jagged-1 also undergoes proteolytic cleavage by gamma-secretase and releases an intracellular fragment. In this study, we have demonstrated that the Jagged-1 intracellular domain (JICD) inhibits Notch1 signaling via a reduction in the protein stability of the Notch1 intracellular domain (Notch1-IC). The formation of the Notch1-IC-RBP-Jk-Mastermind complex is prevented in the presence of JICD, via a physical interaction. Furthermore, JICD accelerates the protein degradation of Notch1-IC via Fbw7-dependent proteasomal pathway. These results indicate that JICD functions as a negative regulator in Notch1 signaling via the promotion of Notch1-IC degradation.  相似文献   

3.
4.
The human tumor suppressor Fbw7/hCdc4 functions as a phosphoepitope-specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination of cyclin E , Notch , c-Jun and c-Myc . Fbw7 loss in cancer may thus have profound effects on the pathways that govern cell division, differentiation, apoptosis, and cell growth. Fbw7-inactivating mutations occur in human tumor cell lines and primary cancers , and Fbw7 loss in cultured cells causes genetic instability . In mice, deletion of Fbw7 leads to embryonic lethality associated with defective Notch and cyclin E regulation . The human Fbw7 locus encodes three protein isoforms (Fbw7alpha, Fbw7beta, and Fbw7gamma) . We find that these isoforms occupy discrete subcellular compartments and have identified cis-acting localization signals within each isoform. Surprisingly, the Fbw7gamma isoform is nucleolar, colocalizes with c-Myc when the proteasome is inhibited, and regulates nucleolar c-Myc accumulation. Moreover, we find that knockdown of Fbw7 increases cell size consistent with its ability to control c-Myc levels in the nucleolus. We suggest that interactions between c-Myc and Fbw7gamma within the nucleolus regulate c-Myc's growth-promoting function and that c-Myc activation is likely to be an important oncogenic consequence of Fbw7 loss in cancers.  相似文献   

5.
Fbw7 and Cdh1 are substrate-recognition subunits of the SCF- and APC-type E3 ubiquitin ligases, respectively. There is emerging evidence suggesting that both Fbw7 and Cdh1 function as tumor suppressors by targeting oncoproteins for destruction. Loss of Fbw7, but not Cdh1, is frequently observed in various human tumors. However, it remains largely unknown how Fbw7 mechanistically functions as a tumor suppressor and whether there is a signaling crosstalk between Fbw7 and Cdh1. Here, we report that Fbw7-deficient cells not only display elevated expression levels of SCFFbw7 substrates, including cyclin E, but also have increased expression of various APCCdh1 substrates. We further defined cyclin E as the critical signaling link by which Fbw7 governs APCCdh1 activity, as depletion of cyclin E in Fbw7-deficient cells results in decreased expression of APCCdh1 substrates to levels comparable to those in wild-type (WT) cells. Conversely, ectopic expression of cyclin E recapitulates the aberrant APCCdh1 substrate expression observed in Fbw7-deficient cells. More importantly, 4A-Cdh1 that is resistant to Cdk2/cyclin E-mediated phosphorylation, but not WT-Cdh1, reversed the elevated expression of various APCCdh1 substrates in Fbw7-deficient cells. Overexpression of 4A-Cdh1 also resulted in retarded cell growth and decreased anchorage-independent colony formation. Altogether, we have identified a novel regulatory mechanism by which Fbw7 governs Cdh1 activity in a cyclin E-dependent manner. As a result, loss of Fbw7 can lead to aberrant increase in the expression of both SCFFbw7 and APCCdh1 substrates. Our study provides a better understanding of the tumor suppressor function of Fbw7, and suggests that Cdk2/cyclin E inhibitors could serve as effective therapeutic agents for treating Fbw7-deficient tumors.  相似文献   

6.
Turnover of cyclin E is controlled by SCF(Fbw7). Three isoforms of Fbw7 are produced by alternative splicing. Whereas Fbw7alpha and -gamma are nuclear and the beta-isoform is cytoplasmic in 293T cells, all three isoforms induce cyclin E destruction in an in vivo degradation assay. Cyclin E is phosphorylated on Thr(62), Ser(88), Ser(372), Thr(380), and Ser(384) in vivo. To examine the roles of phosphorylation in cyclin E turnover, a series of alanine point mutations in each of these sites were analyzed for Fbw7-driven degradation. As expected, mutation of the previously characterized residue Thr(380) to alanine led to profound defects of cyclin E turnover, and largely abolished association with Fbw7. Mutation of Thr(62) to alanine led to a dramatic reduction in the extent of Thr(380) phosphorylation, suggesting an indirect effect of this mutation on cyclin E turnover. Nevertheless, phosphopeptides centered at Thr(62) associated with Fbw7, and residual binding of cyclin E(T380A) to Fbw7 was abolished upon mutation of Thr(62), suggesting a minor role for this residue in direct association with Fbw7. Mutation of Ser(384) to alanine also rendered cyclin E resistant to degradation by Fbw7, with the largest effects being observed with Fbw7beta. Cyclin E(S384A) associated more weakly with Fbw7alpha and -beta isoforms but was not defective in Thr(380) phosphorylation. Analysis of the localization of cyclin E mutant proteins indicated selective accumulation of cyclin E(S384A) in the nucleus, which may contribute to the inability of cytoplasmic Fbw7beta to promote turnover of this cyclin E mutant protein.  相似文献   

7.
The Notch-Delta signaling pathway controls many conserved cell determination events. While the Notch end is fairly well characterized, the Delta end remains poorly understood. Mind bomb1 (MIB1) is one of two E3 ligases known to ubiquitinate Delta. We report here that a targeted mutation of Mib1 in mice results in embryonic lethality by E10.5. Mutants exhibit multiple defects due to their inability to modulate Notch signaling. As histopathology revealed a strong neurogenic phenotype, this study concentrates on characterizing the Mib1 mutant by analyzing Notch pathway components in embryonic neuroepithelium prior to developmental arrest. Premature neurons were observed to undergo apoptosis soon after differentiation. Aberrant neurogenesis is a direct consequence of lowered Hes1 and Hes5 expression resulting from the inability to generate Notch1 intracellular domain (NICD1). We conclude that MIB1 activity is required for S3 cleavage of the Notch1 receptor. These results have direct implications for manipulating the differentiation of neuronal stem cells and provide a putative target for the modulation of specific tumors.  相似文献   

8.
Notch signaling in Drosophila requires a RING finger (RF) protein encoded by neuralized. Here we show that the Xenopus homolog of neuralized (Xneur) is expressed where Notch signaling controls cell fate choices in early embryos. Overexpressing XNeur or putative dominant-negative forms in embryos inhibits Notch signaling. As expected for a RF protein, we show that XNeur fulfills the biochemical requirements of ubiquitin ligases. We also show that wild-type XNeur decreases the cell surface level of the Notch ligand, XDelta1, while putative inhibitory forms of XNeur increase it. Finally, we provide evidence that XNeur acts as a ubiquitin ligase for XDelta1 in vitro. We propose that XNeur plays a conserved role in Notch activation by regulating the cell surface levels of the Delta ligands, perhaps directly, via ubiquitination.  相似文献   

9.
Ribosomal protein S6 kinase (S6K) is involved in the regulation of cell growth and cellular metabolism. The activation of S6K in response to diverse extracellular stimuli is mediated by multiple phosphorylations coordinated by the mTOR and PI3K signaling pathways. We have recently found that both forms of S6K are modified by ubiquitination. Following these findings, we demonstrate here for the first time that S6K1 associates specifically with ubiquitin ligase ROC1 in vitro and in vivo. The interaction was initially identified in the yeast two-hybrid screening and further confirmed by pull-down and co-immunoprecipitation assays. Furthermore, the overexpression of ROC1 leads to an increase in S6K1 ubiquitination. Consistent with this observation, we showed that the steady-state level of S6K1 is regulated by ROC1, since downregulation of ROC1 by specific siRNA promotes stabilization of S6K1 protein. The results suggest the involvement of ROC1 in S6K1 ubiquitination and subsequent proteasomal degradation.  相似文献   

10.
Chk1, an essential checkpoint kinase in the DNA damage response pathway (DDR), is tightly regulated by both ATR-dependent phosphorylation and proteasome-mediated degradation. Here we identify ubiquitin hydrolase USP7 as a novel regulator of Chk1 protein stability. USP7 was shown before to regulate other DDR proteins such as p53, Hdm2 and Claspin, an adaptor protein in the ATR-Chk1 pathway required for Chk1 activation. Depletion or inhibition of USP7 leads to lower Chk1 levels. The decreased Chk1 protein after USP7 knock down cannot be rescued by simultaneously elevating Claspin levels, demonstrating that the effect of USP7 on Chk1 is independent of its known effect on Claspin. Conversely, overexpression of USP7 wild type, but not a catalytic mutant version, elevates Chk1 levels and increases the half-life of Chk1 protein. Importantly, wild type, but not catalytic mutant USP7 can deubiquitinate Chk1 in vivo and in vitro, confirming that USP7 directly regulates Chk1 protein levels. Finally we show that USP7 catalytic mutant is (mono-)ubiquitinated, which suggests auto-deubiquitination by this ubiquitin hydrolase, possibly important for its regulation.  相似文献   

11.
Expansion of a polyglutamine tract in ataxin-3 (polyQ) causes Machado–Joseph disease, a late-onset neurodegenerative disorder characterized by ubiquitin-positive aggregate formation. Several lines of evidence demonstrate that polyQ also accumulates in mitochondria and causes mitochondrial dysfunction. To uncover the mechanism of mitochondrial quality-control via the ubiquitin–proteasome pathway, we investigated whether MITOL, a novel mitochondrial ubiquitin ligase localized in the mitochondrial outer membrane, is involved in the degradation of pathogenic ataxin-3 in mitochondria. In this study, we used N-terminal-truncated pathogenic ataxin-3 with a 71-glutamine repeat (ΔNAT-3Q71) and found that MITOL promoted ΔNAT-3Q71 degradation via the ubiquitin–proteasome pathway and attenuated mitochondrial accumulation of ΔNAT-3Q71. Conversely, MITOL knockdown induced an accumulation of detergent-insoluble ΔNAT-3Q71 with large aggregate formation, resulting in cytochrome c release and subsequent cell death. Thus, MITOL plays a protective role against polyQ toxicity, and thereby may be a potential target for therapy in polyQ diseases. Our findings indicate a protein quality-control mechanism at the mitochondrial outer membrane via a MITOL-mediated ubiquitin–proteasome pathway.  相似文献   

12.
Shi HX  Liu X  Wang Q  Tang PP  Liu XY  Shan YF  Wang C 《PLoS pathogens》2011,7(5):e1002057
The signaling of Toll-like receptors (TLRs) is the host's first line of defense against microbial invasion. The mitochondrion is emerging as a critical platform for antiviral signal transduction. The regulatory role of mitochondria for TLR signaling remains to be explored. Here, we show that the mitochondrial outer-membrane protein MARCH5 positively regulates TLR7 signaling. Ectopic expression or knockdown of MARCH5 enhances or impairs NF-κB-mediated gene expression, respectively. MARCH5 interacts specifically with TANK, and this interaction is enhanced by R837 stimulation. MARCH5 catalyzes the K63-linked poly-ubiquitination of TANK on its Lysines 229, 233, 280, 302 and 306, thus impairing the ability of TANK to inhibit TRAF6. Mislocalization of MARCH5 abolishes its action on TANK, revealing the critical role of mitochondria in modulating innate immunity. Arguably, this represents the first study linking mitochondria to TLR signaling.  相似文献   

13.
The down-regulation or cellular depletion of protein kinase C (PKC) attendant to prolonged activation by phorbol esters is a widely described property of this key family of signaling enzymes. However, neither the mechanism of down-regulation nor whether this mechanism occurs following stimulation by physiological agonists is known. Here we show that the peptidyl-prolyl isomerase Pin1 provides a timer for the lifetime of conventional PKC isozymes, converting the enzymes into a species that can be dephosphorylated and ubiquitinated following activation induced by either phorbol esters or natural agonists. The regulation by Pin1 requires both the catalytic activity of the isomerase and the presence of a Pro immediately following the phosphorylated Thr of the turn motif phosphorylation site, one of two C-terminal sites that is phosphorylated during the maturation of PKC isozymes. Furthermore, the second C-terminal phosphorylation site, the hydrophobic motif, docks Pin1 to PKC. Our data are consistent with a model in which Pin1 binds the hydrophobic motif of conventional PKC isozymes to catalyze the isomerization of the phospho-Thr-Pro peptide bond at the turn motif, thus converting these PKC isozymes into species that can be efficiently down-regulated following activation.  相似文献   

14.
Transforming growth factor-β (TGF-β) signaling is controlled by a variety of regulators, of which Smad7, c-Ski, and SnoN play a pivotal role in its negative regulation. Arkadia is a RING-type E3 ubiquitin ligase that targets these negative regulators for degradation to enhance TGF-β signaling. In the present study we identified a candidate human tumor suppressor gene product RB1CC1/FIP200 as a novel positive regulator of TGF-β signaling that functions as a substrate-selective cofactor of Arkadia. Overexpression of RB1CC1 enhanced TGF-β signaling, and knockdown of endogenous RB1CC1 attenuated TGF-β-induced expression of target genes as well as TGF-β-induced cytostasis. RB1CC1 down-regulated the protein levels of c-Ski but not SnoN by enhancing the activity of Arkadia E3 ligase toward c-Ski. Substrate selectivity is primarily attributable to the physical interaction of RB1CC1 with substrates, suggesting its role as a scaffold protein. RB1CC1 thus appears to play a unique role as a modulator of TGF-β signaling by restricting substrate specificity of Arkadia.  相似文献   

15.
16.
Lateral inhibition, mediated by Notch signaling, leads to the selection of cells that are permitted to become neurons within domains defined by proneural gene expression. Reduced lateral inhibition in zebrafish mib mutant embryos permits too many neural progenitors to differentiate as neurons. Positional cloning of mib revealed that it is a gene in the Notch pathway that encodes a RING ubiquitin ligase. Mib interacts with the intracellular domain of Delta to promote its ubiquitylation and internalization. Cell transplantation studies suggest that mib function is essential in the signaling cell for efficient activation of Notch in neighboring cells. These observations support a model for Notch activation where the Delta-Notch interaction is followed by endocytosis of Delta and transendocytosis of the Notch extracellular domain by the signaling cell. This facilitates intramembranous cleavage of the remaining Notch receptor, release of the Notch intracellular fragment, and activation of target genes in neighboring cells.  相似文献   

17.
18.
Arabidopsis Snf1-related protein kinases (SnRKs) are implicated in pleiotropic regulation of metabolic, hormonal and stress responses through their interaction with the kinase inhibitor PRL1 WD-protein. Here we show that SKP1/ASK1, a conserved SCF (Skp1-cullin-F-box) ubiquitin ligase subunit, which suppresses the skp1-4 mitotic defect in yeast, interacts with the PRL1-binding C-terminal domains of SnRKs. The same SnRK domains recruit an SKP1/ASK1-binding proteasomal protein, alpha4/PAD1, which enhances the formation of a trimeric SnRK complex with SKP1/ASK1 in vitro. By contrast, PRL1 reduces the interaction of SKP1/ASK1 with SnRKs. SKP1/ASK1 is co-immunoprecipitated with a cullin SCF subunit (AtCUL1) and an SnRK kinase, but not with PRL1 from Arabidopsis cell extracts. SKP1/ASK1, cullin and proteasomal alpha-subunits show nuclear co-localization in differentiated Arabidopsis cells, and are observed in association with mitotic spindles and phragmoplasts during cell division. Detection of SnRK in purified 26S proteasomes and co-purification of epitope- tagged SKP1/ASK1 with SnRK, cullin and proteasomal alpha-subunits indicate that the observed protein interactions between SnRK, SKP1/ASK1 and alpha4/PAD1 are involved in proteasomal binding of an SCF ubiquitin ligase in Arabidopsis.  相似文献   

19.
Myosin phosphatase target subunit 1 (MYPT1), together with catalytic subunit of type1 δ isoform (PP1cδ) and a small 20-kDa regulatory unit (M20), form a heterotrimeric holoenzyme, myosin phosphatase (MP), which is responsible for regulating the extent of myosin light chain phosphorylation. Here we report the identification and characterization of a molecular interaction between Seven in absentia homolog 2 (SIAH2) and MYPT1 that resulted in the proteasomal degradation of the latter in mammalian cells, including neurons and glia. The interaction involved the substrate binding domain of SIAH2 (aa 116-324) and a central region of MYPT1 (aa 445-632) containing a degenerate consensus Siah-binding motif RLAYVAP (aa 493-499) evolutionally conserved from fish to humans. These findings suggest a novel mechanism whereby the ability of MP to modulate myosin light chain might be regulated by the degradation of its targeting subunit MYPT1 through the SIAH2-ubiquitin-proteasomal pathway. In this manner, the turnover of MYPT1 would serve to limit the duration and/or magnitude of MP activity required to achieve a desired physiological effect.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号