首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Helicobacter pylori is a causative agent of gastritis and peptic ulceration in humans. As the first step towards development of a vaccine against H. pylori infection, we have attempted to identify protective antigens. A potential target of vaccine development would be a H. pylori specific protein, which is surface-exposed and highly antigenic. We identified a 22 kDa outer-membrane protein (Omp22) from H. pylori, which was highly immunoreactive. By screening a H. pylori genomic DNA library with rabbit anti-H. pylori outer-membrane protein antibodies, the omp22 gene was cloned and 1.4 kb of the nucleotide sequence was determined. One open reading frame, encoding a 179-residue polypeptide, was identified and the amino acid sequence deduced showed homology with peptidoglycan-associated lipoproteins. The sequence was conserved among other H. pylori strains. Omp22 protein is expressed as a precursor polypeptide of 179 residues and undergoes lipid modification and cleavage of an 18 amino acid signal peptide to yield a mature protein. Omp22 protein in H. pylori as well as recombinant Omp22 protein expressed in E. coli was localized into the outer membrane and exposed on the cell surface. Omp22 may have the potential as a target antigen for the development of a H. pylori vaccine.  相似文献   

2.
Epitope vaccine based on urease of Helicobacter pylori is a promising option for prophylactic and therapeutic vaccination against H. pylori infection. In this study, we constructed an epitope vaccine with mucosal adjuvant cholera toxin B subunit (CTB) and an epitope (UreA183-203) of H. pylori urease A subunit named CTB-UA. The CTB-UA fusion protein was expressed in Escherichia coli, and the purified protein was used for intraperitoneal immunization experiments in BALB/c mice. The experimental results indicated that anti-CTB-UA antibody could recognize both H. pylori urease A subunit (UreA) and urease B subunit (UreB). Besides, the CTB-UA epitope vaccine had good immunogenicity and immunoreactivity and could induce specific neutralizing antibodies which showed effectively inhibitory effect on the enzymatic activity of H. pylori urease. CTB-UA is a promising molecule to be investigated as H. pylori vaccine antigen candidate.  相似文献   

3.
To develop an oral vaccine against Helicobacter pylori infection, we have expressed the H. pylori cag12 (HP0532) gene, encoding the outer membrane protein Cag12 (31 kDa), in a live delivery vehicle Lactococcus lactis. The cag12 gene was amplified by polymerase chain reaction (PCR) using the genomic DNA of H. pylori K51 isolated from Korean patients. DNA sequence analysis revealed that the cag12 gene of H. pylori K51 has 98.1 and 97.4% identity with individual cag12 genes of the H. pylori 26695 and J99, respectively. The GST–Cag12 fusion protein, produced using the Escherichia coli expression system, was used to raise a rat polyclonal anti-Cag12 antibody. The PCR-amplified cag12 gene of H. pylori K51 was cloned in the E. coliL. lactis shuttle vector (pMG36e) and transformed into L. lactis. Western blot analysis demonstrated that the Cag12 protein was expressed in the L. lactis transformant, with a maximum level at the log phase without extracelluar secretion. The oral administration of the transformant into mice resulted in the generation of the anti-Cag12 antibody in serum in two out of five cases. These results suggest that the recombinant L. lactis, which expresses Cag12, may be applicable as an oral vaccine to induce protective immunity against H. pylori.  相似文献   

4.
Complementary DNA sequences were isolated from a library of cloned Arabidopsis leaf mRNA sequences in gt10 that encoded a 21.7 kDa polypeptide (CaBP-22), which shared 66% amino acid sequence identity with Arabidopsis calmodulin. The putative Ca2+-binding domains of CaBP-22 and calmodulin, however, were more conserved and shared 79% sequence identity. Ca2+ binding by CaBP-22, which was inferred from its amino acid sequence similarity with calmodulin, was demonstrated indirectly by Ca2+-induced mobility shifting of in vitro translated CaBP-22 during SDS-polyacrylamide gel electrophoresis. CaBP-22 is encoded by a ca. 0.9 kb mRNA that was detected by northern blotting of leaf poly(A)+ RNA; this mRNA was slightly larger than the 809 bp CaBP-22 cDNA insert, indicating that the deduced amino acid sequence of CaBP-22 is near full-length. CaBP-22 mRNA was detected in RNA fractions isolated from leaves of both soil-grown and hydroponically grown Arabidopsis, but below the limits of detection in RNA isolated from roots, and developing siliques. Thus, CaBP-22 represents a new member of the EF-hand family of Ca2+-binding proteins with no known animal homologue and may participate in transducing Ca2+ signals to a specific subset of response elements.  相似文献   

5.
Helicobacter pylori (H. pylori) plays an essential role in the development of various gastroduodenal diseases; however, no vaccines preventing H. pylori infection have been available now. This study was to evaluate the protective effect of rOmp22–HpaA fusion protein against H. pylori infection in mouse model and to screen the candidate to be used in the development of an oral vaccine against H. pylori. rOmp22, rHpaA, rOmp22+rHpaA, and rOmp22–HpaA groups were used to immunize mice with mLT63 as adjuvant by intragastric route, respectively, four times at 1-week intervals. Two weeks after last immunization, all of the animals were orally challenged with H. pylori NCTC11637 and then were killed after another 2 weeks. The mice gastric tissue of all groups was separated to detect the presence of infection by urease tests, to culture H. pylori, and to observe the histological characteristics. The protective effect against H. pylori challenge in mice immunized with rOmp22–HpaA fusion protein and mLT63 adjuvant was significantly higher than PBS and mLT63 control groups (P < 0.05), but no significant difference was detected among rOmp22, rHpaA, rOmp22+rHpaA, and rOmp22–HpaA groups (P > 0.05). rOmp22–HpaA fusion protein retained immunogenicity and could be used as an antigen candidate in the development of an oral vaccine against H. pylori infection.  相似文献   

6.
The 22 kDa auxin-binding proteins in higher plants have received considerable attention as candidates for an auxin receptor. A cDNA clone Ca-ERabp1 of hot pepper (Capsicum annum) was isolated using the oligonucleotides as PCR primers. The cDNA codes for a polypeptide related to the major 22 kDa auxin-binding protein from maize and Arabidopsis ERabp1. The deduced amino acid sequence contains an endoplasmic reticulum retention signal, the KDEL sequence located at the C-terminal end, and has two possible auxin-binding sites, HRHSCE and YDDWSVPHTA conserved sequences. Northern hybridization analysis revealed that the Ca-ERabp1 gene is differentially expressed in total RNA isolated from different organs of a pepper plant, showing the highest level of expression in fruits but barely detectable in leaves and roots.  相似文献   

7.
A temperature-sensitive, protein synthesis-defective mutant ofEscherichia coli exhibiting an altered ribosomal protein L22 has been investigated. The temperature-sensitive mutation was mapped to therplV gene for protein L22. The genes from the wild type and mutant strains were amplified by the polymerase chain reaction and the products were sequenced. A cytosine to thymine transition at position 22 of the coding sequence was found in the mutant DNA, predicting an arginine to cysteine alteration in the protein. A single cysteine residue was found in the isolated mutant protein. This amino acid change accounts for the altered mobility of the mutant protein in two-dimensional gels and during reversed-phase HPLC. The temperature-sensitive phenotype was fully complemented by a plasmid carrying the wild type L22 gene. Ribosomes from the complemented cells showed only wild type protein L22 by two dimensional gel analysis and were as heat-resistant as control ribosomes in a translation assay. The point mutation in the L22 gene is uniquely responsible for the temperature-sensitivity of this strain.  相似文献   

8.
A tissue-specific cDNA library was constructed using polyA+ RNA from pituitary glands of the Indian catfishHeteropneustes fossilis (Bloch) and a cDNA clone encoding growth hormone (GH) was isolated. Using polymerase chain reaction (PCR) primers representing the conserved regions of fish GH sequences the 3′ region of catfish GH cDNA (540 bp) was cloned by random amplification of cDNA ends and the clone was used as a probe to isolate recombinant phages carrying the full-length cDNA sequence. The full-length cDNA clone is 1132 bp in length, coding for an open reading frame (ORF) of 603 bp; the reading frame encodes a putative polypeptide of 200 amino acids including the signal sequence of 22 amino acids. The 5′ and 3′ untranslated regions of the cDNA are 58 bp and 456 bp long, respectively. The predicted amino acid sequence ofH. fossils GH shared 98% homology with other catfishes. Mature GH protein was efficiently expressed in bacterial and zebrafish systems using appropriate expression vectors. The successful expression of the cloned GH cDNA of catfish confirms the functional viability of the clone.  相似文献   

9.
Background: The growing concern over the emergence of antibiotic‐resistant Helicobacter pylori infection is propelling the development of an efficacious vaccine to control this highly adaptive organism. Aim: We studied the use of a dendritic cell (DC)‐based vaccine against H. pylori infection in mice. Methods: The cellular immune responses to murine bone marrow‐derived DCs pulsed with phosphate‐buffered saline (PBS‐DC) or live H. pylori SS1 (HP‐DC) were assessed in vitro and in vivo. The protective immunity against H. pylori SS1 oral challenge was compared between HP‐DC or PBS‐DC immunized mice. The effect of regulatory T‐cell (Treg) depletion by anti‐CD25 antibody on HP‐DC vaccine efficacy was also evaluated. Results: HP‐DC induced a Th1‐dominant response in vitro. In vivo, HP‐DC immunized mice were characterized by a mixed Th1/Th2 peripheral immune response. However, in the stomach, HP‐DC immunized mice expressed a higher level of IFN‐γ compared to PBS‐DC immunized mice; no difference was found for interleukin‐5 expressions in the stomach. A lower bacterial colonization post‐H. pylori challenge was observed in HP‐DC immunized mice compared to PBS‐DC immunized mice with no significant difference in gastritis severity. H. pylori‐specific Th1 response and protective immunity were further enhanced in vivo by depletion of Treg with anti‐CD25 antibody. Conclusion: DC‐based anti‐H. pylori vaccine induced H. pylori‐specific helper T‐cell responses capable of limiting bacterial colonization. Our data support the critical role of effector cellular immune response in the development of H. pylori vaccine.  相似文献   

10.
AIMS: To identify and characterize nonfimbrial proteins from Aeromonas veronii involved in the attachment to epithelial cells in vitro. METHODS AND RESULTS: Two Aer. veronii mucin- and lactoferrin-binding proteins with molecular masses of 37 and 48 kDa were identified by Western blot analysis. According to its N-terminal amino acid sequence, the 48-kDa protein was identified as Omp48, an outer-membrane protein similar to LamB of Escherichia coli. LamB is a well-known porin involved in maltose transport across the outer membrane in E. coli. In a microtitre plate assay, Omp48 bound to the immobilized extracellular matrix proteins collagen and fibronectin, and the mucin- and lactoferrin-binding activity was confirmed. Adhesion of Omp48 to mucin, lactoferrin and collagen was diminished by preincubation with homologous glycoproteins or other carbohydrates, suggesting a putative Omp48 lectin-like binding domain. Anti-Omp48 antiserum significantly inhibited the Aer. veronii adhesion to confluent HeLa cell monolayers and pretreatment of cells with purified Omp48 elicited competitive inhibition of adhesion. Similarly, cross-inhibition of Aer. hydrophila and Aer. caviae adhesion was achieved with the same treatments, indicating the existence of a conserved surface protein among these species. CONCLUSIONS: Taken together, these data indicate that Omp48 is involved in Aer. veronii adhesion to epithelial cells and might be an alternative adhesion factor of this micro-organism. SIGNIFICANCE AND IMPACT OF THE STUDY: The adhesive potential of Aeromonas spp. is correlated with pathogenicity; however, the adhesion mechanism is complex and not well understood. This study provides evidence of a putative adhesion factor that might be contributing to pathogenicity of Aer. veronii and could be used for vaccine development.  相似文献   

11.
Helicobacter pylori (H. pylori) is established as the etiologic agent of chronic active gastritis, peptic ulcer, gastric cancer and mucosa-associated lymphoid tissue lymphoma. The development of a vaccine against H. pylori has become a priority to prevent and cure H. pylori infection. The UreB (urease B) subunit is the most effective and common immunogen of all strains of H. pylori and may stimulate the immunoresponse protecting the human body against the challenge of H. pylori. To date no report has documented an edible carrot vaccine against H. pylori. We transformed the gene of UreB into carrot by Agrobacterium-mediated transformation and the regenerated carrot plants demonstrated that the expressed UreB protein accounted for 25 μg/g roots and was effective to induce immune response in mice. These results suggest that the UreB transgenic carrot can be potentially used as an edible vaccine for controlling H. pylori.  相似文献   

12.
Yonezawa H  Osaki T  Woo T  Kurata S  Zaman C  Hojo F  Hanawa T  Kato S  Kamiya S 《Anaerobe》2011,17(6):388-390
Helicobacter pylori is one of the most common causes of bacterial infection in humans. Infection with H. pylori is closely associated with gastritis and peptic ulcers and is a risk factor for gastric cancer and mucosa-associated lymphoid tissue lymphoma. H. pylori forms biofilms on glass surfaces at the air–liquid interface in in-vitro batch cultures. We previously reported that strain TK1402 showed a strong biofilm-forming ability in vitro. We also suggested the outer membrane vesicles (OMV) produced by strain TK1402 might be related to its biofilm forming ability. In the present study, we analyzed the protein profile of the OMV produced by strain TK1402 and found a unique 22-kDa protein in TK1402 OMV cultured for 2–3 days. In addition, this protein could not be detected in the OMVs produced by other H. pylori strains. These results suggest that the 22-kDa protein is involved in effective biofilm formation by strain TK1402.  相似文献   

13.
Helicobacter pylori cell-surface glycans exert strong influences in host–microbe interplays and define the strain’s immunological signature. Envisaging the development of a carbohydrate-based vaccine against the gastroduodenal pathogen H. pylori, several clinical isolates are being screened for their cell-surface glycan profile. The present work concerns H. pylori clinical specimen PTAV79 that abundantly expressed amylose-like glycans. These polysaccharides were isolated in glycan-rich fractions resultant from phenol–water extractions and purified by Bio-Gel P2. Structural studies showed that the glycans are linked to glycerol and present aldobiouronic acid domains composed of [→3)-α-d-GlcA-(1→4)-α-d-Glc-(1→] repeating units. The amylose domains were constituted by an average of 19 Glc residues and the acidic moieties had an average number of 10 aldobiouronic acid repeating units. These polysaccharides were isolated in fractions that, although hydrophilic, were rich in stearic acid, strongly suggesting that they are present as glycerolipids anchored to cell-surface.  相似文献   

14.
Summary. Branched-chain amino acid aminotransferase was purified by several column chromatographies from Helicobacter pylori NCTC 11637, and the N-terminal amino acid sequence was analyzed. The enzyme gene was sequenced based on a putative branched-chain amino acid aminotransferase gene, ilvE of H. pylori 26695, and the whole amino acid sequence was deduced from the nucleotide sequence. The enzyme existed in a homodimer with a calculated subunit molecular weight (MW) of 37,539 and an isoelectric point (pI) of 6.47. The enzyme showed high affinity to 2-oxoglutarate (K m = 0.085 mM) and L-isoleucine (K m = 0.34 mM), and V max was 27.3 μmol/min/mg. The best substrate was found to be L-isoleucine followed by L-leucine and L-valine. No activity was shown toward the D-enantiomers of these amino acids. The optimal pH and temperature were pH 8.0 and 37 °C, respectively.  相似文献   

15.
Chen S  Zhang R  Duan G  Shi J 《Current microbiology》2011,62(6):1726-1731
Helicobacter pylori is the principal cause of chronic active gastritis, peptic ulcer, and gastric cancer. To develop an oral vaccine against H. pylori infection, we had expressed the H. pylori ureB gene (Genbank accession no. FJ436980) in nisin-controlled expression vectors using Lactococcus lactis NZ3900 as host. The ureB gene was amplified by PCR from a H.pylori strain MEL-Hp27. Then the ureB gene was fused translationally downstream of the nisin-inducible promoter nisA in a L. lactis plasmid pNZ8149. Lactose utilization based on the complementation of the lacF gene was used as a dominant selection marker for the food-grade expression system employing L. lactis NZ3900. The conditions of UreB expression in this system were optimized by orthogonal experiment. The optimized conditions have been determined as follows: induction of expression was carried out at the cells density of OD600 ≈ 0.4 with 25 ng/ml nisin, and harvest after 5 h. The maximum percentage of recombinant UreB was estimated to be 7% of total soluble cellular proteins and the yield was 12.9 μg/ml. Western blot demonstrated that the UreB protein was expressed in the L. lactis transformant and had favorable immunoreactivity. These results indicated that the lactococci-derived vaccines could be promising candidates as alternative vaccine strategies for preventing H. pylori infection.  相似文献   

16.
The RecA protein is a key enzyme involved in DNA recombination in bacteria. Using a polymerase chain reaction (PCR) amplification we cloned arecA homolog fromHelicobacter pylori. The gene revealed an open reading frame (ORF) encoding a putative protein of 37.6 kDa showing closest homology to theCampylobacter jejuni RecA (75.5% identity). A putative ribosome binding site and a near-consensus σ70 promoter sequence was found upstream ofrec A. A second ORF, encoding a putative protein with N-terminal sequence homology to prokaryotic and eukaryotic enolases, is located directly downstream ofrecA. Compared to the wild-type strains, isogenicH. pylori recA deletion mutants of strains 69A and NCTC11637 displayed increased sensitivity to ultraviolet light and abolished general homologous recombination. The recombinantH. pylori RecA protein produced inEscherichia coli strain GC6 (recA ) was 38 kDa in size but inactive in DNA repair, whereas the corresponding protein inH. pylori 69A migrated at the greater apparent molecular weight of approx. 40 kDa in SDS-polyacrylamide gels. However, complementation of theH. pylori mutant using the clonedrecA gene on a shuttle vector resulted in a RecA protein of the original size and fully restored the general functions of the enzyme. These data can be best explained by a modification of RecA inH. pylori which is crucial for its function. The potential modification seems not to occur when the protein is produced inE. coli, giving rise to a smaller but inactive protein.  相似文献   

17.
In a previous two-dimensional (2D) gel electrophoretic study of protein antigens of the gastric pathogen, Helicobacter pylori recognized by human sera, one of the highly and consistently reactive antigens, a protein with Mr of approximately 30?000 (Spot 15) seemed to be of special interest because of low yields on N-terminal protein sequencing. This suggested possible N-terminal modification, as the N-terminal sequence analysis of this 30?000 protein (Spot 15) did not provide a definitive match within the H. pylori genomic database. This protein was isolated by 2D polyacrylamide gel electrophoresis, evaluated by liquid chromatography–mass spectrometry, and found to consist of two related species of approximately 28?100 and 26?500. In parallel, the proteins within this spot were digested in situ with the endoprotease Lys-C. Analysis of the Lys-C digest by matrix-assisted laser desorption time-of-flight mass spectrometry, peptide mapping, and sequence analysis was conducted. Comparison of the mass and sequence of the Lys-C peptides with those derived from a H. pylori genomic library identified an open reading frame of approximately 300 base pairs as the source of the Spot 15 protein. This corresponded to HP0175 in the recently reported H. pylori genome sequence, an open reading frame with some homology to Campylobacter jejeuni cell binding protein 2. Mass spectral and sequence analysis indicated that Spot 15 was a processed product generated by proteolytic cleavage at both the carboxy and amino termini of the 34 open reading frame precursor.  相似文献   

18.
The cells of Helicobacter pylori were suspended in the medium containing35S-methionine. After a heat shock of the cells at 42 C for 5, 10, and 30 min, the production of proteins was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Out of many proteins produced by the cells, only 66 kDa protein production was dramatically increased by heat treatment. The N-terminal amino acid sequence of 66 kDa protein was quite similar to that of 62 kDa and 54 kDa proteins previously suggested as heat shock protein (HSP) of H. pylori based on the reaction with polyclonal and monoclonal antibodies against HSP 60 family proteins produced by other bacteria. Therefore, it was concluded that H. pylori produces the 66 kDa protein as its major heat shock protein which belongs to HSP 60 family.  相似文献   

19.
The gene for the catalytic subunit of cellulose synthase from Acetobacter xylinum has been cloned by using an oligonucleotide probe designed from the N-terminal amino acid sequence of the catalytic subunit (an 83 kDa polypeptide) of the cellulose synthase purified from trypsin-treated membranes of A. xylinum. The gene was located on a 9.5 kb HindIII fragment of A. xylinum DNA that was cloned in the plasmid pUC18. DNA sequencing of approximately 3 kb of the HindIII fragment led to the identification of an open reading frame of 2169 base pairs coding for a polypeptide of 80 kDa. Fifteen amino acids in the N-terminal region (positions 6 to 20) of the amino acid sequence, deduced from the DNA sequence, match with the N-terminal amino acid sequence obtained for the 83 kDa polypeptide, confirming that the DNA sequence cloned codes for the catalytic subunit of cellulose synthase which transfers glucose from UDP-glucose to the growing glucan chain. Trypsin treatment of membranes during purification of the 83 kDa polypeptide cleaved the first 5 amino acids at the N-terminal end of this polypeptide as observed from the deduced amino acid sequence, and also from sequencing of the 83 kDa polypeptide purified from membranes that were not treated with trypsin. Sequence analysis suggests that the cellulose synthase catalytic subunit is an integral membrane protein with 6 transmembrane segments. There is no signal sequence and it is postulated that the protein is anchored in the membrane at the N-terminal end by a single hydrophobic helix. Two potential N-glycosylation sites are predicted from the sequence analysis, and this is in agreement with the earlier observations that the 83 kDa polypeptide is a glycoprotein [13]. The cloned gene is conserved among a number of A. xylinum strains, as determined by Southern hybridization.  相似文献   

20.
An abundant 17 kDa protein which was isolated and characterized from 10-day old healthy root tissue of white lupin (Lupinus albus) proved to have a high sequence similarity to pathogenesis-related proteins found in other species. Subsequently, a corresponding clone (LaPR-10) was identified in a cDNA library prepared from the same tissue that exhibited a high amino acid sequence similarity to a number of the PR-10 family proteins. The clone contains an open reading frame encoding a polypeptide of 158 amino acids, with a predicted molecular mass of 16905 Da and an isoelectric point of 4.66. Southern blot analysis indicates that LaPR-10 is likely a single-copy gene, or a member of a small gene family. The clone was expressed in Escherichia coli, and its protein product was purified to near homogeneity. Both the native and the recombinant proteins were immunorecognized by antibodies raised against pea PR-10 proteins, and exhibited a ribonucleolytic activity against several RNA preparations, including lupin root total RNA. Characterization of its enzymatic properties indicates that the LaPR-10 protein belongs to the class II ribonucleases. We present evidence that the white lupin 17 kDa protein is constitutively expressed during all stages of root development and, to a lesser extent, in other plant parts. In addition, we demonstrate the presence, in the LaPR-10 amino acid sequence, of a number of motifs that are common to most PR-10 proteins, as well as a RGD motif that is shared only with the alfalfa SRG1 sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号