首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian signal recognition particle (SRP) catalytically promotes cotranslational translocation of signal sequence containing proteins across the endoplasmic reticulum membrane. While the S-domain of SRP binds the N-terminal signal sequence on the nascent polypeptide, the Alu domain of SRP temporarily interferes with the ribosomal elongation cycle until the translocation pore in the membrane is correctly engaged. Here we present biochemical and biophysical evidence for a hierarchical assembly pathway of the SRP Alu domain. The proteins SRP9 and SRP14 first heterodimerize and then initially bind to the Alu RNA 5' domain. This creates the binding site for the Alu RNA 3' domain. Alu RNA then undergoes a large conformational change with the flexibly linked 3' domain folding back by 180 degrees onto the 5' domain complex to form the final compact Alu ribonucleoprotein particle (Alu RNP). We discuss the possible mechanistic consequences of the likely reversibility of this final step with reference to translational regulation by the SRP Alu domain and with reference to the structurally similar Alu RNP retroposition intermediates derived from Alu elements in genomic DNA.  相似文献   

2.
The signal recognition particle (SRP), a cytoplasmic ribonucleoprotein, plays an essential role in targeting secretory proteins to the rough endoplasmic reticulum membrane. In addition to the targeting function, SRP contains an elongation arrest or pausing function. This function is carried out by the Alu domain, which consists of two proteins, SRP9 and SRP14, and the portion of SRP (7SL) RNA which is homologous to the Alu family of repetitive sequences. To study the assembly pathway of the components in the Alu domain, we have isolated a cDNA clone of SRP9, in addition to a previously obtained cDNA clone of SRP14. We show that neither SRP9 nor SRP14 alone interacts specifically with SRP RNA. Rather, the presence of both proteins is required for the formation of a stable RNA-protein complex. Furthermore, heterodimerization of SRP9 and SRP14 occurs in the absence of SRP RNA. Since a partially reconstituted SRP lacking SRP9 and SRP14 [SRP(-9/14)] is deficient in the elongation arrest function, it follows from our results that both proteins are required to assemble a functional domain. In addition, SRP9 and SRP14 synthesized in vitro from synthetic mRNAs derived from their cDNA clones restore elongation arrest activity to SRP(-9/14).  相似文献   

3.
We have identified functionally and analyzed a minimal Alu RNA folding domain that is recognized by SRPphi14-9. Recombinant SRPphi14-9 is a fusion protein containing on a single polypeptide chain the sequences of both the SRP14 and SRP9 proteins that are part of the Alu domain of the signal recognition particle (SRP). SRPphi14-9 has been shown to bind to the 7SL RNA of SRP and it confers elongation arrest activity to reconstituted SRP in vitro. Alu RNA variants with homogeneous 3' ends were produced in vitro using ribozyme technology and tested for specific SRPphi14-9 binding in a quantitative equilibrium competition assay. This enabled identification of an Alu RNA of 86 nt (SA86) that competes efficiently with 7SL RNA for SRPphi14-9 binding, whereas smaller RNAs did not. The secondary structure of SA86 includes two stem-loops that are connected by a highly conserved bulge and, in addition, a part of the central adaptor stem that contains the sequence at the very 3' end of 7SL RNA. Circularly permuted variants of SA86 competed only if the 5' and 3' ends were joined with an extended linker of four nucleotides. SA86 can thus be defined as an autonomous RNA folding unit that does not require its 5' and 3' ends for folding or for specific recognition by SRPphi14-9. These results suggest that Alu RNA identity is determined by a characteristic tertiary structure, which might consist of two flexibly linked domains.  相似文献   

4.

Background

Human cells depend critically on the signal recognition particle (SRP) for the sorting and delivery of their proteins. The SRP is a ribonucleoprotein complex which binds to signal sequences of secretory polypeptides as they emerge from the ribosome. Among the six proteins of the eukaryotic SRP, the largest protein, SRP72, is essential for protein targeting and possesses a poorly characterized RNA binding domain.

Results

We delineated the minimal region of SRP72 capable of forming a stable complex with an SRP RNA fragment. The region encompassed residues 545 to 585 of the full-length human SRP72 and contained a lysine-rich cluster (KKKKKKKKGK) at postions 552 to 561 as well as a conserved Pfam motif with the sequence PDPXRWLPXXER at positions 572 to 583. We demonstrated by site-directed mutagenesis that both regions participated in the formation of a complex with the RNA. In agreement with biochemical data and results from chymotryptic digestion experiments, molecular modeling of SRP72 implied that the invariant W577 was located inside the predicted structure of an RNA binding domain. The 11-nucleotide 5e motif contained within the SRP RNA fragment was shown by comparative electrophoresis on native polyacrylamide gels to conform to an RNA kink-turn. The model of the complex suggested that the conserved A240 of the K-turn, previously identified as being essential for the binding to SRP72, could protrude into a groove of the SRP72 RNA binding domain, similar but not identical to how other K-turn recognizing proteins interact with RNA.

Conclusions

The results from the presented experiments provided insights into the molecular details of a functionally important and structurally interesting RNA-protein interaction. A model for how a ligand binding pocket of SRP72 can accommodate a new RNA K-turn in the 5e region of the eukaryotic SRP RNA is proposed.  相似文献   

5.
The mammalian Alu domain of the signal recognition particle (SRP) consists of a heterodimeric protein SRP9/14 and the Alu portion of 7SL RNA and comprises the elongation arrest function of the particle. To define the domain in Saccharomyces cerevisiae SRP that is homologous to the mammalian Alu domain [Alu domain homolog in yeast (Adhy)], we examined the assembly of a yeast protein homologous to mammalian SRP14 (Srp14p) and scR1 RNA. Srp14p binds as a homodimeric complex to the 5' sequences of scR1 RNA. Its minimal binding site consists of 99 nt. (Adhy RNA), comprising a short hairpin structure followed by an extended stem. As in mammalian SRP9/14, the motif UGUAAU present in most SRP RNAs is part of the Srp14p binding sites as shown by footprint and mutagenesis studies. In addition, certain basic amino acid residues conserved between mammalian SRP14 and Srp14p are essential for RNA binding in both proteins. These findings confirm the common ancestry of the yeast and the mammalian components and indicate that Srp14p together with Adhy RNA represents the Alu domain homolog in yeast SRP that may comprise its elongation arrest function. Despite the similarities, Srp14p selectively recognizes only scR1 RNA, revealing substantial changes in RNA-protein recognition as well as in the overall structure of the complex. The alignment of the three yeast SRP RNAs known to date suggests a common structure for the putative elongation arrest domain of all three organisms.  相似文献   

6.
The heterodimeric subunit, SRP9/14, of the signal recognition particle (SRP) has previously been found to bind to scAlu and scB1 RNAs in vitro and to exist in large excess over SRP in anthropoid cells. Here we show that human and mouse SRP9/14 bind with high affinities to other Alu-like RNAs of different evolutionary ages including the neuron-specific BC200 RNA. The relative dissociation constants of the different RNA-protein complexes are inversely proportional to the evolutionary distance between the Alu RNA species and 7SL RNA. In addition, the human SRP9/14 binds with higher affinity than mouse SRP9/14 to all RNAs analyzed and this difference is not explained by the additional C-terminal domain present in the anthropoid SRP14. The conservation of high affinity interactions between SRP9/14 and Alu-like RNAs strongly indicates that these Alu-like RNPs exist in vivo and that they have cellular functions. The observation that human SRP9/14 binds better than its mouse counterpart to distantly related Alu RNAs, such as recently transposed elements, suggests that the anthropoid-specific excess of SRP9/14 may have a role in controlling Alu amplification rather than in compensating a defect in SRP assembly and functions.  相似文献   

7.
Nearly 1 million Alu elements in human DNA were inserted by an RNA-mediated retroposition-amplification process that clearly decelerated about 30 million years ago. Since then, Alu sequences have proliferated at a lower rate, including within the human genome, in which Alu mobility continues to generate genetic variability. Initially derived from 7SL RNA of the signal recognition particle (SRP), Alu became a dominant retroposon while retaining secondary structures found in 7SL RNA. We previously identified a human Alu RNA-binding protein as a homolog of the 14-kDa Alu-specific protein of SRP and have shown that its expression is associated with accumulation of 3'-processed Alu RNA. Here, we show that in early anthropoids, the gene encoding SRP14 Alu RNA-binding protein was duplicated and that SRP14-homologous sequences currently reside on different human chromosomes. In anthropoids, the active SRP14 gene acquired a GCA trinucleotide repeat in its 3'-coding region that produces SRP14 polypeptides with extended C-terminal tails. A C-->G substitution in this region converted the mouse sequence CCA GCA to GCA GCA in prosimians, which presumably predisposed this locus to GCA expansion in anthropoids and provides a model for other triplet expansions. Moreover, the presence of the trinucleotide repeat in SRP14 DNA and the corresponding C-terminal tail in SRP14 are associated with a significant increase in SRP14 polypeptide and Alu RNA-binding activity. These genetic events occurred during the period in which an acceleration in Alu retroposition was followed by a sharp deceleration, suggesting that Alu repeats coevolved with C-terminal variants of SRP14 in higher primates.  相似文献   

8.
D E Birse  U Kapp  K Strub  S Cusack    A Aberg 《The EMBO journal》1997,16(13):3757-3766
The mammalian signal recognition particle (SRP) is an 11S cytoplasmic ribonucleoprotein that plays an essential role in protein sorting. SRP recognizes the signal sequence of the nascent polypeptide chain emerging from the ribosome, and targets the ribosome-nascent chain-SRP complex to the rough endoplasmic reticulum. The SRP consists of six polypeptides (SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72) and a single 300 nucleotide RNA molecule. SRP9 and SRP14 proteins form a heterodimer that binds to the Alu domain of SRP RNA which is responsible for translation arrest. We report the first crystal structure of a mammalian SRP protein, that of the mouse SRP9/14 heterodimer, determined at 2.5 A resolution. SRP9 and SRP14 are found to be structurally homologous, containing the same alpha-beta-beta-beta-alpha fold. This we designate the Alu binding module (Alu bm), an additional member of the family of small alpha/beta RNA binding domains. The heterodimer has pseudo 2-fold symmetry and is saddle like, comprising a strongly curved six-stranded amphipathic beta-sheet with the four helices packed on the convex side and the exposed concave surface being lined with positively charged residues.  相似文献   

9.
Prediction of signal recognition particle RNA genes   总被引:3,自引:1,他引:3  
We describe a method for prediction of genes that encode the RNA component of the signal recognition particle (SRP). A heuristic search for the strongly conserved helix 8 motif of SRP RNA is combined with covariance models that are based on previously known SRP RNA sequences. By screening available genomic sequences we have identified a large number of novel SRP RNA genes and we can account for at least one gene in every genome that has been completely sequenced. Novel bacterial RNAs include that of Thermotoga maritima, which, unlike all other non-gram-positive eubacteria, is predicted to have an Alu domain. We have also found the RNAs of Lactococcus lactis and Staphylococcus to have an unusual UGAC tetraloop in helix 8 instead of the normal GNRA sequence. An investigation of yeast RNAs reveals conserved sequence elements of the Alu domain that aid in the analysis of these RNAs. Analysis of the human genome reveals only two likely genes, both on chromosome 14. Our method for SRP RNA gene prediction is the first convenient tool for this task and should be useful in genome annotation.  相似文献   

10.
The conserved signal recognition particle targets ribosomes synthesizing presecretory proteins to the endoplasmic reticulum membrane. Key to the activity of SRP is its ability to bind the ribosome at distant locations, the signal sequence exit and elongation factor-binding sites. These contacts are made by the S and Alu domains of SRP, respectively. We tested earlier secondary structure predictions of the Saccharomyces cerevisiae SRP RNA, scR1, and provide and test a consensus structure. The structure contains four non-conserved insertions, helices 9-12, into the core SRP RNA fold, and an extended helix 7. Using a series of scR1 mutants lacking part or all of these structural elements, we find that they are important for the RNA in both function and assembly of the RNP. About 20% of the RNA, corresponding to the outer regions of these helices, is dispensable for function. Further, we examined the role of several features within the S-domain section of the core, helix 5, and find that its length and flexibility are important for proper SRP function and become essential in the absence of helix 10, 11 and/or 7 regions. Overall, the genetic data indicate that regions of scR1 distant in both primary sequence and secondary structure have interrelated roles in the function of the complex, and possibly mediate communication between Alu and S domains during targeting.  相似文献   

11.
N Bui  N Wolff  S Cusack    K Strub 《RNA (New York, N.Y.)》1997,3(7):748-763
Two polypeptides of the murine signal recognition particle (SRP), SRP9 and SRP14, bind exclusively as a heterodimer to SRP RNA and their presence is required for elongation arrest activity of the particle. SRP9/14 also constitute a subunit of small cytoplasmic Alu RNPs. To identify RNA-binding determinants, we assayed the dimerization and RNA-binding capacities of altered proteins in vitro. Despite the structural homology of the two proteins, their requirements for dimerization differ substantially. In SRP9, an internal fragment of 43 amino acids is sufficient to allow dimer formation, whereas in SRP14 only few changes, such as removing an internal loop region, are tolerated without affecting its dimerization activity. The dimerization defect of the SRP14 proteins is most likely explained by a reduced stability or ability to fold of the proteins. Interestingly, SRP RNA can engage certain dimerization-defective SRP14 proteins into stable complexes, suggesting that low-affinity interactions between the RNA and SRP14 may help to overcome the folding defect or the reduced stability of the proteins. We identified two regions, one in each protein, that are essential for RNA-binding. In SRP9, acidic amino acid residues in the N-terminal alpha-helix and the adjacent loop and, in SRP14, a flexible internal loop region are critical for RNA-binding. In the heterodimer, the two regions are located in close proximity, consistent with the RNA-binding region being formed by both proteins.  相似文献   

12.
13.
Y Thomas  N Bui    K Strub 《Nucleic acids research》1997,25(10):1920-1929
The signal recognition particle (SRP) provides the molecular link between synthesis of polypeptides and their concomitant translocation into the endoplasmic reticulum. During targeting, SRP arrests or delays elongation of the nascent chain, thereby presumably ensuring a high translocation efficiency. Components of the Alu domain, SRP9/14 and the Alu sequences of SRP RNA, have been suggested to play a role in the elongation arrest function of SRP. We generated a truncated SRP14 protein, SRP14-20C, which forms, together with SRP9, a stable complex with SRP RNA. However, particles reconstituted with SRP9/14-20C, RC(9/14-20C), completely lack elongation arrest activity. RC(9/14-20C) particles have intact signal recognition, targeting and ribosome binding activities. SRP9/14-20C therefore only impairs interactions with the ribosome that are required to effect elongation arrest. This result provides evidence that direct interactions between the Alu domain components and the ribosome are required for this function. Furthermore, SRP9/14-20C binding to SRP RNA results in tertiary structure changes in the RNA. Our results strongly indicate that these changes account for the negative effect of SRP14 truncation on elongation arrest, thus revealing a critical role of the RNA in this function.  相似文献   

14.
The mammalian signal recognition particle (SRP) is a small cytoplasmic ribonucleoprotein required for the cotranslational targeting of secretory proteins to the endoplasmic reticulum membrane. The heterodimeric protein subunit SRP9/14 was previously shown to be essential for SRP to cause pausing in the elongation of secretory protein translation. RNase protection and filter binding experiments have shown that binding of SRP9/14 to SRP RNA depends solely on sequences located in a domain of SRP RNA that is strongly homologous to the Alu family of repetitive DNA sequences. In addition, the use of hydroxyl radicals, as RNA-cleaving reagents, has revealed four distinct regions in this domain that are in close contact with SRP9/14. Surprisingly, the nucleotide sequence in one of these contact sites, predicted to be mostly single stranded, was found to be extremely conserved in SRP RNAs of evolutionarily distant organisms ranging from eubacteria and archaebacteria to yeasts and higher eucaryotic cells. This finding suggests that SRP9/14 homologs may also exist in these organisms, where they possibly contribute to the regulation of protein synthesis similar to that observed for mammalian SRP in vitro.  相似文献   

15.
The eukaryotic signal recognition particle (SRP) is essential for cotranslational targeting of proteins to the endoplasmic reticulum (ER). The SRP Alu domain is specifically required for delaying nascent chain elongation upon signal sequence recognition by SRP and was therefore proposed to interact directly with ribosomes. Using protein cross-linking, we provide experimental evidence that the Alu binding protein SRP14 is in close physical proximity of several ribosomal proteins in functional complexes. Cross-linking occurs even in the absence of a signal sequence in the nascent chain demonstrating that SRP can bind to all translating ribosomes and that close contacts between the Alu domain and the ribosome are independent of elongation arrest activity. Without a signal sequence, SRP14 cross-links predominantly to a protein of the large subunit. Upon signal sequence recognition, certain cross-linked products become detectable or more abundant revealing a change in the Alu domain-ribosome interface. At this stage, the Alu domain of SRP is located at the ribosomal subunit interface since SRP14 can be cross-linked to proteins from the large and small ribosomal subunits. Hence, these studies reveal differential modes of SRP-ribosome interactions mediated by the Alu domain.  相似文献   

16.
17.
18.
19.
The organization of the 7SL RNA in the signal recognition particle.   总被引:34,自引:11,他引:23       下载免费PDF全文
Digestion of the signal recognition particle (SRP) of dog pancreas with micrococcal nuclease results in the stepwise cleavage of the 300 nucleotide 7SL RNA moiety producing five major fragments approximately 220 (1), 150 (2), 72 (3), 62 (4) and 45 (5) nucleotides long. The RNA molecule is initially cut once yielding fragments 1 and 3. Further degradation releases fragments 2, 4 and 5. The introduction of the first nick into the 7SL RNA does not alter the structure nor the function of the SRP. Further degradation of the RNA results in disruption and loss of activity of the particle. The sequence of the RNA fragments shows that the nuclease causes discrete cuts in the RNA with minimal nibbling indicating that only few sites are accessible to the action of the enzyme. The five major products of nuclease digestion together span almost the entire length of the 7SL RNA. Nicking occurs mainly around the boundary region between the central S sequence and the flanking Alu sequences constituting the 7SL RNA (1). The S fragment is bound to the four largest polypeptides while the 5' and 3' Alu fragments are associated with the two smallest protein constituents of the SRP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号