首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Complexes of the type [Co(LL)2Cl2]Cl, where LL = N,N'-ethylenediamine (en), 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione (phendione) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) have been synthesized and characterized by elemental analyses, IR, UV-visible and NMR spectroscopy. Crystal structure of [Co(phendione)2Cl2]Cl x 0.5 HCl x 3.5 H2O has been solved and refined to R = 0.0552. The crystal is monoclinic with space group C2/c; a = 25.730(2) A, b = 12.375(1) A, c = 18.979(2) A, beta = 119.925(1) degrees and Z = 8. The DNA binding characteristics of the complexes, investigated by covalent binding assay, viscosity measurements and competitive binding fluorescence measurements show that the complexes interact with DNA covalently except the complex containing the planar dppz ligand which intercalates within the base pairs of DNA. The complexes containing en, phen and phendione cleave plasmid pBR 322 DNA upon irradiation under aerobic conditions while the complex containing the dppz ligand cleaves DNA upon irradiation under inert atmosphere. Molecular modeling studies show that the minimized structure of [Co(phendione)2Cl2]+, maintained the octahedral structure while binding to the N7 of guanines and the ligand fits into the major groove without disrupting the helical structure of the B-DNA.  相似文献   

2.
Complexes of the type [M(apash)Cl] and [M(Hapash)(H2O)SO4], where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hapash = acetone p-amino acetophenone salicyloyl hydrazone have been synthesized and characterized by elemental analyses, molar conductance, magnetic moments, electronic, ESR and IR spectra, thermal studies (TGA & DTA) and X-ray diffraction studies. The ligand coordinates through two >C=N and a deprotonated enolate group in all the chloro complexes, whereas through two >C=N- and a >C=O group in all the sulfato complexes. The electronic spectra suggest a square planar geometry for Co(II), Ni(II) and Cu(II) chloride complexes and an octahedral geometry for the sulfate complexes. ESR data show an isotropic symmetry for [Cu(apash)Cl] and [Cu(Hapash)(H2O)SO4] in solid state. However, ESR spectra of both Cu(II) complexes indicate the presence of unpaired electron in d x2-y2. The X-ray diffraction parameters for [Co(apash)Cl] and [Cu(Hapash)(H2O)SO4] complexes correspond to a tetragonal and an orthorhombic crystal lattices, respectively. Thermal studies of [Co(apash)Cl] complex shows a multi-step decomposition pattern. Most of the complexes show better antifungal activity than the standard miconazole against a number of pathogenic fungi. The antibacterial activity of these complexes has been evaluated against E. coli and Clostridium sp. which shows a moderate activity.  相似文献   

3.
Complexes of the type [M(pabh)(H2O)Cl], [M(pcbh)(H2O)Cl] and [M(Hpabh)(H2O)2 (SO4)] where, M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hpabh = p-amino acetophenone benzoyl hydrazone and Hpcbh = p-chloro acetophenone benzoyl hydrazone have been synthesized and characterized with the help of elemental analyses, electrical conductance, magnetic susceptibility measurements, electronic, ESR and IR spectra, thermal (TGA & DTA) and X-ray diffraction studies. Co(II), Ni(II) and Cu(II) chloride complexes are square planar, whereas their sulfate complexes have spin-free octahedral geometry. ESR spectra of Cu(II) complexes with Hpabh are axial and suggest d(x(2)-y(2) as the ground state. The ligand is bidentate bonding through > C = N--and deprotonated enolate group in all the chloro complexes, whereas, >C = N and >C = O groups in all the sulfato complexes. Thermal studies (TGA & DTA) on [Cu(Hpabh)(H2O)2(SO4)] indicate a multistep decomposition pattern, which are both exothermic and endothermic in nature. X-ray powder diffraction parameters for [Co(pabh)(H2O)Cl] and [Ni(Hpabh)(H2O)2(SO4)] correspond to tetragonal and orthorhombic crystal lattices, respectively. The ligands as well as their complexes show a significant antifungal and antibacterial activity. The metal complexes are more active than the ligand.  相似文献   

4.
Eight rare earth metal(II) complexes with quercetin ML3 x 6H2O [L=quercetin (3-OH group deprotonated); M = La, Nd, Eu, Gd, Tb, Dy, Tm and Y] have been synthesized and characterized by elemental analysis, complexometric titration, thermal analysis, conductivity, IR, UV, 1HNMR and fluorescence spectra techniques as well as cyclic voltammetry. The quercetin:metal stoichiometry and the equilibrium stability constant for metal binding to quercetin have been determined. The antioxidative and antitumor activities of quercetin x 2H2O and the complexes were tested by both the MTT and SRB methods. The results show that the suppression ratio of the complexes against the tested tumour cells are superior to quercetin x 2H2O. The property of LaL3 x 6H2O reacting with calf thymus DNA was studied by fluorescence methods. The La-complex binding to DNA has been determined by fluorescence titration in 0.05 M Tris-HCl, 0.5 M NaCl buffer (pH 7.0). The results indicate that the interaction of the complex with DNA is very evident.  相似文献   

5.
A new ligand, 6-hydroxy chromone-3-carbaldehyde-(2'-hydroxy) benzoyl hydrazone (L), was prepared by condensation of 6-hydroxy-3-carbaldehyde chromone (CDC) with 2-hydroxy benzoyl hydrazine. Its four rare earth complexes have been synthesized and characterized on the basis of elemental analyses, molar conductivities, mass spectra, 1H NMR, thermogravimetry/differential thermal analysis (TG-DTA), UV-vis spectra, fluorescence spectra, and IR spectra. The general formula of the complexes is [LnL2.(NO3)2].NO3 [Ln=La(1), Sm(2), Dy(3), Eu(4)]. Spectrometric titration, ethidium bromide displacement experiments, and viscosity measurements indicate that Eu(III) complex and ligand, especially the Eu(III) complex, strongly bind with calf-thymus DNA, presumably via an intercalation mechanism. The intrinsic binding constants of Eu(III) complex and ligand with DNA were 3.55 x 10(6) and 1.33 x 10(6)M(-1) through fluorescence titration data, respectively. In addition, the suppression ratio for O2-* and OH* of the ligand and its complexes was studied by spectrophotometric methods. The experimental results show that La (1), Sm (2), and Eu (4) complexes are better effective inhibitor for OH* than that of mannitol. It indicates that the complexes have the activity to suppress O2-* and OH* and exhibit more effective antioxidants than ligand alone.  相似文献   

6.
Two asymmetric tridentate copper(II) complexes, [Cu(dppt)Cl(2)].0.25H(2)O (1) (dppt=3-(1,10-phenanthrolin-2-yl)-5,6-diphenyl-as-triazine) and [Cu(pta)Cl(2)] (2) (pta=3-(1,10-phenanthrolin-2-yl)-as-triazino[5,6-f]acenaphthylene), have been prepared and characterized by elemental analysis, IR and Fast atomic bombardment mass spectra. Complex 1 has also been structurally characterized. The complexes exist as distorted square pyramid with five co-ordination sites occupied by the tridentate ligand and the two chlorine anions. DNA interaction studies suggest that the ligand planarity of the complex has a significant effect on DNA binding affinity increasing in the order [Cu(dppt)Cl(2)]< [Cu(pta)Cl(2)]. In the presence of ascorbate or glutathione, the two complexes are found to cause significant cleavage of double-strand pBR 322 DNA and [Cu(pta)Cl(2)] exhibited the higher cleaving efficiency.  相似文献   

7.
Mixed ligand complexes of cisdichloromethioninepalladium(II) with 2-mercaptopyrimidine and 2-aminopyrimidine were synthesized and characterized by elemental analysis, conductivity data, infrared, and 1H NMR and 13C NMR spectra. In these mixed ligand complexes methionine coordinates to palladium through amino nitrogen and sulphur, thus leaving a free carboxylic acid group. The pyrimidine ligand coordinates to metal ion through N3. Mixed ligand complexes of cisdichloroethioninepalladium(II) with cytosine and guanosine were synthesized and characterized earlier. All the above mixed ligand complexes were screened for antimicrobial activity against Vibrio parahaemolyticus, Pseudomonas aeruginosa, Proteus vulgaris, Escherichia coli, Shigella flexnerri, Salmonella typhii, Klebsella pneumoniae, and Vibrio cholerae. It was found that complexes [Pd(meth)Cl2]: [Pd(meth)(2merpy)Cl]Cl; [Pd(meth)(2ampy)Cl]Cl; [Pd(ethio)Cl2]; [Pd(ethio)(cyt)Cl]Cl; and [Pd(ethio)(guo)Cl]Cl showed broad spectrum antimicrobial activity against all the human pathogens tested, however [Pd(meth)(2merpy)Cl]Cl eliminated plasmid with 100% frequency. These complexes have also been screened in vitro for antitumor activity against Hela (Epidermoid Carcinoma Cervix) and CHO cell lines. An excellent correlation between the antitumor activity of Pd(II) complexes and their ability to cure plasmids exists.  相似文献   

8.
Cobalt(II) complexes with 6-(2-hydroxybenzylamino)purine (HL1), 6-(2-methoxybenzylamino)purine (HL2), 6-(3-methoxybenzylamino)purine (HL3) and 6-(4-methoxybenzylamino)purine (HL4) of the composition [Co(L1)Cl(H2O)2].H2O (1), [Co(L2)Cl(H2O)2] (2), [Co(L3)2(H2O)2].2H2O (3), [Co(L4)2(H2O)2].2H2O (4) have been synthesized. The compounds have been characterized by elemental analysis, FT-IR, ES+ MS (electrospray mass spectra in the positive ion mode) and electronic spectroscopies, magnetic and conductivity data as tetrahedral high-spin cobalt(II) complexes. The thermal stability of the complexes has also been studied. The cytotoxicity of the complexes (1-4) was determined by a Calcein acetoxymethyl (AM) assay. Human malignant melanoma (G361), human chronic myelogenous erythroleukemia (K562), human osteogenic sarcoma (HOS) and human breast adenocarcinoma (MCF7) cell lines were used for the testing. The molecular structure of 6-(3-methoxybenzylamino)purinium chloride monohydrate, H2L3+.Cl.H2O, i.e. a protonated form of the free HL(3) ligand, has been determined by a single crystal X-ray analysis. The geometry optimisation and infrared frequencies calculations of HL1, HL2, and H2L3+ and H2L4+ were performed using density-functional theory (DFT) calculations at the B3LYP/6-31G* level of the theory. The geometry of complex (1) was optimised at the same level of the theory.  相似文献   

9.
The new square-planar Pt(II) and Pd(II) complexes with cytokinin-derived compounds Bohemine and Olomoucine, having the formulae [Pt(BohH(+))Cl(3)].H(2)O (1), [Pt(Boh)(2)Cl(2)].3H(2)O (2), [Pt(Boh-H)Cl(H(2)O)(2)].H(2)O (3), [Pt(OloH(+))Cl(3)].H(2)O (4), [Pd(BohH(+))Cl(3)].H(2)O (5), [Pd(Boh)Cl(2)(H(2)O)] (6), [Pd(Boh-H)Cl(H(2)O)].EtOH (7) and [Pd(OloH(+))Cl(3)].H(2)O (8), where Boh=6-(benzylamino)-2-[(3-(hydroxypropyl)amino]-9-isopropylpurine and Olo=6-(benzylamino)-2-[(2-(hydroxyethyl)amino]-9-methylpurine, have been synthesized. The complexes have been characterized by elemental analyses, IR, FAB+ mass, 1H, 13C and 195Pt NMR spectra, and conductivity data. The molecular structure of the complex [Pt(BohH(+)-N7)Cl(3)].9/5H(2)O has been determined by an X-ray diffraction study. Results from physical studies show that both Bohemine and Olomoucine are coordinated to transition metals through the N(7) atom of purine ring in all the complexes. The prepared compounds have been tested in vitro for their possible cytotoxic activity against G-361 (human malignant melanoma), HOS (human osteogenic sarcoma), K-562 (human chronic myelogenous leukemia) and MCF-7 (human breast adenocarcinoma) cell lines and IC(50) values have been also determined for all the complexes. IC(50) values estimated for the Pt(II)-Bohemine complexes (2.1-16 microM) allow us to conclude that they could find utilization in antineoplastic therapy. Thus, from a pharmacological point of view, Pt(II) complexes of Bohemine may represent compounds for a new class of antitumor drugs.  相似文献   

10.
Two mixed ligand complexes [Ru(bpy)(2)(DMHBT)]Cl(2)(1) and [Ru(phen)(2)(DMHBT)]Cl(2) (2) (where DMHBT is 11,13-dimethyl-13H-4,5,9,11,14-hexaaza-benzo[b]triphenylene-10,12-dione) have been synthesized and characterized by electrospray ionization (ESI) mass, (1)H-(1)H correlation spectroscopy (COSY), electronic spectroscopy, fluorescence spectroscopy and cyclic voltammetry. Spectroscopic titration and viscosity changes of calf thymus (CT)-DNA in the presence of incremental amount of complexes 1 and 2 clearly demonstrate that both these complexes bind intercalatively to DNA, with binding constant 2.87+/-0.20 x 10(4)M(-1) and 1.01+/-0.20 x 10(5)M(-1) for complexes 1 and 2, respectively. All the experimental evidences suggest that the ancillary ligand 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) influences the intercalative binding of these complexes to DNA.  相似文献   

11.
2-Carboxylbenzaldehyde thiosemicarbazone (HL), and its three lanthanide (III) complexes, LnL(3) x 4H(2)O [Ln(III)=La, Sm, Eu], have been synthesized in water. The complexes were characterized by elemental analyses, molar conductivity and IR spectra. The crystal structure of [Sm(2)L(6)(CH(3)OH)(4)] x 7.5CH(3)OH x 0.5H(2)O obtained from methanol solution was determined by X-ray diffraction analysis, crystallized in the triclinic system, space group P-1, Z=1, a=12.217 (2)A, b=14.706 (2)A, c=15.035 (2)A, alpha=111.84(1) degrees , beta=103.47(1) degrees , gamma=104.24(1) degrees , R(1)=0.0290. It has symmetrical (mu-OCO)(2), (mu-O)(2) and disamarium(III) units. The coordination geometry of each Sm(III) ion is a distorted tetradecahedron with nine oxygen atoms. In addition, the DNA-binding properties of the ligand and its complexes have been investigated by absorption, fluorescence, and viscosity measurements. The experimental results indicate that the ligand and the Sm-complex can bind to DNA, but the other two complexes cannot; the binding affinity of the Sm-complex is higher than that of the ligand and the intrinsic binding constant K(b) of the complex is 3.22 x 10(5)M(-1).  相似文献   

12.
Vitamin K3-thiosemicarbazone (C12H11N3NaO4S2 x 5H2O, abbreviated as VT), a new Schiff base derivative, has been synthesized. Its crystal structure, determined by X-ray diffraction, is triclinic, space group P1. We have also prepared five novel complexes of VT with transition metals: [M(VT)(2)2H2O] x nH2O, (n = 1 and 2 for M = Cu(II) and Zn(II), respectively) and [M'(HVT)2Cl2] x mH2O, (m = 4, 5, and 7 for M' = Co(II), Mn(II), and Ni(II), respectively). These compounds were characterized by IR and UV-Vis spectroscopy, molar conductivity, thermal analyses, complexometric titration, and elemental analysis. In all the complexes, the VT ligand coordinates through sulfur and oxygen atoms, and the geometry around metal atom is best described as octahedral. In vitro tests of antibacterial activity showed that VT and its complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) all had strong inhibitory actions against G(+) Staphylococcus aureus, G(+) Hay bacillus, and G(-) Escherichia coli.  相似文献   

13.
Interaction between [Co(NH3)5Cl]Cl2, [Co(NH3)4Cl2]Cl and L-ascorbic acid has been investigated in aqueous solution and solid complexes of the type [Co(NH3)5 ascorbate]Cl2 X H2O and [Co(NH3)4 ascorbate]Cl2 X H2O have been isolated and characterized by 13C-NMR, FT-IR and electron absorption spectroscopy. Spectroscopic and other evidence suggested that the sugar anion binds monodentately in the [Co(NH3)5 ascorbate]2+ cation via the ionized O3 oxygen atom and bidentately in [Co(NH3)4 ascorbate]2+ through the O1 and O4 oxygen atoms, resulting in a six-coordinate geometry around the Co(III) ion. The intermolecular sugar hydrogen-bonding network is perturbed upon sugar metalation and the sugar moiety shows a similar conformation to that of the sodium ascorbate compound in these series of cobalt-ammine complexes.  相似文献   

14.
The synthesis, characterization and biological activity of the first zinc(II) complexes with potent inhibitors of cyclin-dependent kinases (CDKs) derived from 6-benzylaminopurine are described. Based on the results following from elemental analyses, infrared, NMR and ES+MS (electrospray mass spectra in the positive ion mode) spectroscopies, conductivity data, thermal analysis and X-ray structures, the tetrahedral Zn(II) complexes of the compositions [Zn(Olo)Cl(2)](n) (1), [Zn(iprOlo)Cl(2)](n) (2), [Zn(BohH(+))Cl(3)] x H(2)O (3) and [Zn(iprOloH(+))Cl(3)] x H(2)O (4) have been prepared, where Olo=2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine (Olomoucine), iprOlo=2-(2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine (i-propyl-Olomoucine), Boh=2-(3-hydroxypropylamino)-6-benzylamino-9-isopropylpurine (Bohemine). The 1D-polymeric chain structure for [Zn(Olo)Cl(2)](n) (1) as well as the monomeric one for [Zn(BohH(+))Cl(3)] x H(2)O (3) and [Zn(iprOloH(+))Cl(3)] x H(2)O (4) have been revealed unambiguously by single crystal X-ray analyses. The 1D-polymeric chain of 1 consists of Zn(Olo)Cl(2) monomeric units in which the Zn(II) ion is coordinated by two chlorine atoms and one oxygen atom of the 2-hydroxyethylamino group of Olomoucine. The next monomeric unit is bonded to Zn(II) through the N7 atom of a purine ring. Thus, each of Zn(II) ions is tetrahedrally coordinated and a ZnCl(2)NO chromophore occurs in the complex 1. The complexes 3 and 4 are mononuclear species with a distorted tetrahedral arrangement of donor atoms around the Zn(II) ion with a ZnCl(3)N chromophore. The corresponding CDK inhibitor, i.e., both Boh and iprOlo, is coordinated to Zn(II) via the N7 atom of the purine ring in 3 and 4. The cytotoxicity of the zinc(II) complexes against human melanoma, sarcoma, leukaemia and carcinoma cell lines has been determined as well as the inhibition of the CDK2/cyclin E kinase. A relationship between the structure and biological activity of the complexes is also discussed.  相似文献   

15.
A novel class of ruthenium (III) complexes of formulas K[Ru(sar)2Cl2].12H2O and K2[Ru(dmgly)Cl4].2H2O, containing bidentate chelates N-methylglycine (sarcosine, sar) or N,N-dimethylglycine (dmgly) and additional chloro ligands were synthesized. The complexes have been obtained by direct reaction of ruthenium(III) chloride with corresponding bidentate ligand followed by addition of base (KOH). These new complexes were characterized by elemental analysis, IR and electronic absorption spectroscopy. As astrocytomas, the most common of all brain tumors, are still very difficult to treat, we examined the influence of newly synthesized ruthenium-based complexes, as well as the earlier synthesized analogue platinum(IV) complexes [Pt(dmgly)2Cl2], [Pt(sar)2Br2] and [Pt(dmgly)2Br2], on rat astrocytoma C6 cells in vitro. Among these complexes only K2[Ru(dmgly)Cl4].2H2O and [Pt(dmgly)2Br2] markedly inhibited the viability of non-confluent C6 cells. Furthermore, only complex K2[Ru(dmgly)Cl4].2H2O was able to reduce viability in confluent C6 cultures. Importantly, this complex was not toxic to primary rat astrocytes or macrophages. Having in mind that appropriate chemotherapy should be effective against tumor cells without harming normal tissues, complex K2[Ru(dmgly)Cl4].2H2O could be a promising agent for developing therapeutics against astrocytomas.  相似文献   

16.
The interaction of newly synthesised water-soluble planar complexes of general structure [Pt(diimine)(N,N-dihydroxyethyl-N'-benzoylthioureato)]+Cl- with DNA was investigated by means of DNA melting studies, CD spectroscopy, and DNA gel mobility studies. Addition of stoichometric amounts of [Pt(diimine)H2L-S,O]Cl complexes to polynucleotides caused a significant increase in the melting temperature of poly(dA-dT) and calf-thymus DNA, respectively, indicating that these complexes interacted with DNA and stabilised the double helical structure. The CD spectra confirmed the relatively strong binding of three related Pt(II) complexes ([Pt(2,2'-bipyridine)H2L-S,O]Cl, [Pt(4,4'-dimethyl-2,2'-bipyridine)H2L-S,O]Cl, and [Pt(1,10-phenanthroline)H2L-S,O]Cl), to DNA. Comparison with the published CD spectra of ethidium bromide/DNA complex suggests a similar intercalation mode of binding. cis-[(4,4'-di-tert-butyl-2,2'-bipyridyl)N,N-di(2-hydroxyethyl)-N'-benzoylthioureatoplatinum(II)] chloride, with its very bulky tert-butyl groups, did not intercalate into the polynucleotide double helix. In DNA mobility studies in the presence of the four [Pt(diimine)H2L-S,O]Cl complexes, only [Pt(2,2'-bipyridine)H2L-S,O]Cl affected the DNA mobility to any detectable extent. Finally, in vivo studies on the biological activity of the complexes, using an Escherichia coli DNA excision repair deficient uvrA mutant strain, indicated that only the [Pt(2,2'-bipyridine)H2L-S,O]Cl complex showed significant cellular toxicity and that this was, in part, linked to DNA damage.  相似文献   

17.
The complexes [Pt(dapo)2Cl2], [PtNH3(dapo)Cl2], [Pt(py)(dapo)Cl2], [Pt(mbpo)Cl2].H2O, [Pt(mbpo)(OH)2Cl2].H2O, [Pd(dapo)2Cl2], and [Pd(mbpo)Cl2], where dapo is dimethyl aminomethylphosphine oxide and mbpo is methyl bis(aminomethyl)phosphite oxide have been synthesized and characterized by elemental analyses, electric conductivity, infrared, 1H NMR and electronic spectra. The ligands are found to be coordinated only via the amino groups. The complexes are of cis-square planar configuration with the exception of [Pt(mbpo)(OH)2Cl2].H2O which is pseudo-octahedral. An in vivo antitumor screening of the complexes against Leukemia L1210 was performed. A considerable activity (T/C = 233%) was observed for [PtNH3(dapo)Cl2]. The activity of the remaining complexes was below the accepted criterion.  相似文献   

18.
Platinum(II) halide complexes with N-ethylimidazole (N-EtIm) and N-propylimidazole (N-PropIm) of the Pt(L)2X2 and Pt(L)4X2 types (X = Cl, Br, I) were prepared and characterized by far infrared spectra, electronic spectra, and conductivity measurements. The inhibitorial activity of some complexes on the Ca,Mg-dependent ATPase and the antitumor studies of the Pt(L)4Cl2 derivatives have been investigated. Pt complexes are not inhibitory active in comparison to the same Pd complexes (if c = 10(-4) M). The LD50 in physiological solution for [Pt(N-EtIm)4]Cl2 X 2H2O and [Pt(N-PropIm)4]Cl2 are higher enough with respect to the cis platinum.  相似文献   

19.
The [M(ESDT)Cl]n (M = Pd or Pt; ESDT = EtO2CCH2(CH3)NCS2, methylamino-acetic acid ethyl ester-dithiocarboxylate) species have been reacted with various amines (py, pyridine; PrNH2, n-propylamine; c-BuNH2, cyclobutylamine; en, ethylenediamine) in dichloromethane or chloroform with the aim to obtain mixed ligand complexes. The neutral complexes [M(ESDT)(L)Cl] (L = py, PrNH2 or c-BuNH2) and the ionic species ([M(ESDT)(L)2]Cl and [M(ESDT)(En)]Cl) have been isolated, and characterized by IR and proton NMR spectroscopies. The crystal structure of [Pd(ESDT)(PrNH2)Cl] has been determined by X-ray crystallography. The behaviour of the complexes in various solvents was described on the basis of the proton NMR spectra. The complexes and the dithiocarbamato intermediates have been tested for in vitro cytostatic activity against human leukemic HL-60 and HeLa cells.  相似文献   

20.
An overview is given of the results of metal ion-diclofenac interactions. Several complexes have been synthesized at the University of Ioannina. Binuclear complexes, [Cu(L)2(H2O)]2 x 2H2O and [CuL2(S)]2 where S is H2O, EtOH, DMSO, (CH3)2CO and DMF, and mononuclear complexes, [MnL2(H2O)], [FeL2(H2O)2], [CoL2(H2O)2] x 0.5H2O, [CoL2(H2O)], [NiL2(H2O)2] x 2H2O, [NiL2] and [PdL2] x 2H2O, have been characterized by spectroscopy, X-ray crystallography and electrochemical studies. The catalytic activity of these complexes was correlated to the reduction potential. Some of the complexes of diclofenac exhibit very promising anti-inflammatory activity and act as antioxidant compounds, a property that is absent from diclofenac.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号