首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gupta GD  Makde RD  Rao BJ  Kumar V 《The FEBS journal》2008,275(16):4235-4249
Translin protein is highly conserved in eukaryotes. Human translin binds both ssDNA and RNA. Its nucleic acid binding site results from a combination of basic regions in the octameric structure. We report here the first biochemical characterization of wild-type Drosophila melanogaster (drosophila) translin and a chimeric translin, and present 3.5 A resolution crystal structures of drosophila P168S mutant translin from two crystal forms. The wild-type drosophila translin most likely exists as an octamer/decamer, and binds to the ssDNA Bcl-CL1 sequence. In contrast, ssDNA binding-incompetent drosophila P168S mutant translin exists as a tetramer. The structures of the mutant translin are identical in both crystal forms, and their C-terminal residues are disordered. The chimeric protein, possessing two nucleic acid binding motifs of drosophila translin, the C-terminal residues of human translin, and serine at position 168, attains the octameric state and binds to ssDNA. The present studies suggest that the oligomeric status of translin critically influences the DNA binding properties of translin proteins.  相似文献   

3.
Nine mutant forms of ribosomal proteins L1 from the bacterium Thermus thermophilus and the archaeon Methanococcus jannaschii were obtained. Their crystal structures were determined and analyzed. Earlier determined structure of S179C TthL1 was also thoroughly analyzed. Five from ten mutant proteins reveal essential changes of spatial structure caused by surface point mutation. It proves that for correct studies of biological processes by site-directed mutagenesis it is necessary to determine or at least to model spatial structures of mutant proteins. Detailed comparison of mutant L1 structures with that of corresponding wild type proteins reveals that side chain of a mutated amino acid residue tries to locate like the side chain of the original residue in the wild type protein. This observation helps to model the mutant structures.  相似文献   

4.
Nine mutant ribosomal proteins L1 from the bacterium Thermus thermophilus and archaeon Methanococcus jannaschii were obtained and their crystal structures were determined and analyzed. The structure of the S179C TthL1 mutant, determined earlier, was also analyzed. In half of the proteins studied, point mutations of the amino acid residues exposed on the protein surface essentially changed the spatial structure of the protein. This proves that a correct study of biological processes with the help of site-directed mutagenesis requires a preliminary determination or, at least, modeling of the structures of mutant proteins. A detailed comparison of the structures of the L1 mutants and the corresponding wild-type L1 proteins demonstrated that the side chain of a mutated amino acid residue tends to adopt a location similar to that of the side chain of the corresponding residue in the wild-type protein. This observation assists in modeling the structure of mutant proteins.  相似文献   

5.
Experimental phasing of macromolecular crystal structures relies on the accurate measurement of two or more sets of reflections from isomorphous crystals, where the scattering power of a few atoms is different for each set. Recently, it was demonstrated that X-ray-induced intensity differences can also contain phasing information, exploiting specific structural changes characteristic of X-ray damage. This method (radiation damage-induced phasing; RIP) has the advantage that it can be performed on a single crystal of the native macromolecule. However, a drawback is that X-rays introduce many small changes to both solvent and macromolecule. In this study, ultraviolet (UV) radiation has been used to induce specific changes in the macromolecule alone, leading to a larger contrast between radiation-susceptible and nonsusceptible sites. Unlike X-ray RIP, UV RIP does not require the use of a synchrotron. The method has been demonstrated for a series of macromolecules.  相似文献   

6.
Two crystal structures of yeast translation elongation factor 2 (eEF2) were determined: the apo form at 2.9 A resolution and eEF2 in the presence of the translocation inhibitor sordarin at 2.1 A resolution. The overall conformation of apo eEF2 is similar to that of its prokaryotic homolog elongation factor G (EF-G) in complex with GDP. Upon sordarin binding, the three tRNA-mimicking C-terminal domains undergo substantial conformational changes, while the three N-terminal domains containing the nucleotide-binding site form an almost rigid unit. The conformation of eEF2 in complex with sordarin is entirely different from known conformations observed in crystal structures of EF-G or from cryo-EM studies of EF-G-70S complexes. The domain rearrangements induced by sordarin binding and the highly ordered drug-binding site observed in the eEF2-sordarin structure provide a high-resolution structural basis for the mechanism of sordarin inhibition. The two structures also emphasize the dynamic nature of the ribosomal translocase.  相似文献   

7.
Subtilisin from the hyperthermophilic archaeon Thermococcus kodakaraensis (Tk-subtilisin) is matured from Pro-Tk-subtilisin upon autoprocessing and degradation of the propeptide. The crystal structures of the autoprocessed and mature forms of Tk-subtilisin were determined at 1.89 A and 1.70 A resolution, respectively. Comparison of these structures with that of unautoprocessed Pro-Tk-subtilisin indicates that the structure of Tk-subtilisin is not seriously changed during maturation. However, one unique Ca(2+)-binding site (Ca-7) is identified in these structures. In addition, the N-terminal region of the mature domain (Gly70-Pro82), which binds tightly to the main body in the unautoprocessed form, is disordered and mostly truncated in the autoprocessed and mature forms, respectively. Interestingly, this site is formed also in the unautoprocessed form when its crystals are soaked with 10 mM CaCl(2), as revealed by the 1.87 A structure. Along with the formation of this site, the N-terminal region (Leu75-Thr80) is disordered, with the scissile peptide bond contacting with the active site. These results indicate that the calcium ion binds weakly to the Ca-7 site in the unautoprocessed form, but is trapped upon autoprocessing. We propose that the Ca-7 site is required to promote the autoprocessing reaction by stabilizing the autoprocessed form, in which the new N terminus of the mature domain is structurally disordered. Furthermore, the crystal structure of the Tk-propeptide:S324A-subtilisin complex, which was formed by the addition of separately expressed proteins, was determined at 1.65 A resolution. This structure is virtually identical with that of the autoprocessed form, indicating that the interaction between the two domains is highly intensive and specific.  相似文献   

8.
9.
The ever growing availability of macromolecular crystal structures determined at atomic resolution has now reached a critical size, making it possible to obtain statistically unbiased data on both protein stereochemistry and the validity of the parameters used in their refinement. Besides the determination of the precise geometry of proteins and their active sites, high resolution structures have made it possible to check the application of normal mode calculations, to calculate charge density distributions and to analyze hydration shells around protein molecules. Even if only a few structures involve protein complexes, either with ligands or prosthetic groups, the information obtained in these cases is of great interest for obtaining the physical parameters of these interactions.  相似文献   

10.
Comparative models of three proteins have been built using a variety of computational methods, heavily supplemented by visual inspection. We consider the accuracy obtained to be worse than expected. A careful analysis of the models shows that a major reason for the poor results is the interconnectedness of the structural differences between the target proteins and the template structures they were modeled from. Side chain conformations are often determined by details of the structure remote in the sequence, and can be influenced by relatively small main chain changes. Almost all of the regions of substantial main chain conformational change interact with at least one other such region, so that they often cannot be modeled independently. Visual inspection is sometimes effective in correcting errors in sequence alignment and in spotting when an alternative template structure is more appropriate. We expect some improvements in the near future through the development of structure-based sequence alignment tools, side chain interconnectedness rotamer choice algorithms, and a better understanding of the context sensitivity of conformational features. © 1995 Wiley-Liss, Inc.  相似文献   

11.
The complete amino acid sequences of ribosomal proteins L9, L20, L21/22, L24 and L32 from the archaebacterium Halobacterium marismortui were determined. The comparison of the sequences of these proteins with those from other organisms revealed that proteins L21/22 and L24 are homologous to ribosomal protein Yrp29 from yeast and L19 from rat, respectively, and that H. marismortui L20 is homologous to L30 from eubacteria. H. marismortui ribosomal protein L9 showed sequence homology to both L29 from yeast and L15 from eubacteria. No homologous protein was found for H. marismortui L32. These results are discussed with respect to the phylogenetic relationship between eubacteria, archaebacteria and eukaryotes.  相似文献   

12.
13.
New three-dimensional structures of allosteric proteins reveal they have a flexible architecture that is instrumental to the regulation of protein function. Highlights are the structures of GroEL, pyruvate kinase, -3-phosphoglycerate dehydrogenase and the acetylcholine receptor. Furthermore, significant progress in understanding the nature of the intermediates involved in an allosteric reaction has been achieved through recent spectroscopic and crystallographic studies on haemoglobin.  相似文献   

14.
Predicting the effect of a single amino acid substitution on the stability of a protein structure is a fundamental task in macromolecular modeling. It has relevance to drug design and understanding of disease-causing protein variants. We present KINARI-Mutagen, a web server for performing in silico mutation experiments on protein structures from the Protein Data Bank. Our rigidity-theoretical approach permits fast evaluation of the effects of mutations that may not be easy to perform in vitro, because it is not always possible to express a protein with a specific amino acid substitution. We use KINARI-Mutagen to identify critical residues, and we show that our predictions correlate with destabilizing mutations to glycine. In two in-depth case studies we show that the mutated residues identified by KINARI-Mutagen as critical correlate with experimental data, and would not have been identified by other methods such as Solvent Accessible Surface Area measurements or residue ranking by contributions to stabilizing interactions. We also generate 48 mutants for 14 proteins, and compare our rigidity-based results against experimental mutation stability data. KINARI-Mutagen is available at http://kinari.cs.umass.edu.  相似文献   

15.
Cyanobacteria have evolved a unique carbon fixation organelle known as the carboxysome that compartmentalizes the enzymes RuBisCO and carbonic anhydrase. This effectively increases the local CO2 concentration at the active site of RuBisCO and decreases its relatively unproductive side reaction with oxygen. Carboxysomes consist of a protein shell composed of hexameric and pentameric proteins arranged in icosahedral symmetry. Facets composed of hexameric proteins are connected at the vertices by pentameric proteins. Structurally homologous pentamers and hexamers are also found in heterotrophic bacteria where they form architecturally related microcompartments such as the Eut and Pdu organelles for the metabolism of ethanolamine and propanediol, respectively. Here we describe two new high-resolution structures of the pentameric shell protein CcmL from the cyanobacteria Thermosynechococcus elongatus and Gloeobacter violaceus and provide detailed analysis of their characteristics and comparison with related shell proteins.  相似文献   

16.
Conformational changes in bacteriophage tail proteins after heating and ionic strength alteration leading to dissociation of tail sheath have been studied using protein fluorescence, differential scanning microcalorimetry and electron microscopy methods. Autonomous structural changes in tube-baseplate proteins have been revealed. They take place under the same conditions as those which release the bonds holding the sheath protein subunits to those of the tube in isolated sheathed tails. The conformational changes in the tube-baseplates are reversible similarly to the process of assembly and disassembly of the extended sheath. Morphological changes in the tube have been found at the temperature above the transition registered by protein fluorescence but not by calorimetry. This suggests that revealed spectral alterations reflect changes in quaternary structure of tail tube in particular.  相似文献   

17.
Kim TD  Ryu HJ  Cho HI  Yang CH  Kim J 《Biochemistry》2000,39(48):14839-14846
Most proteins are denatured by heat treatment, and the process is usually irreversible. However, some proteins, such as hyperthermophilic proteins are known to be stable even at the boiling temperature of water. We here describe a systematic investigation of thermal behavior of proteins by purifying and characterizing some heat-resistant proteins (HRPs) that are not aggregated upon heat treatment. Although most proteins were precipitated by boiling in a water bath, about 20 and 70 wt % of total proteins appeared to be heat-resistant in Jurkat T-cell lysates and human serum, respectively. We identified major HRPs from Jurkat T-cells and human serum by N-terminal amino acid sequencing and Western blot analysis. HRPs of 20 and 45 kDa (HRP20 and HRP45) were identified as alpha-synuclein and calreticulin, respectively, and HRPs of 60, 27, and 16 kDa (HRP60, HRP27, and HRP16) were identified as human serum fetuin, apolipoprotein A-I, and transthyretin, respectively. By a systematic investigation of the effect of heat on the secondary structure of the purified HRPs by circular dichroic spectroscopy, we observed four major types of thermal behavior, suggesting that the proteins could protect themselves through these pathways. Although our analysis is restricted to protein secondary structural changes, our data indicate that heat resistance of protein can be achieved in several different ways depending on the thermodynamic stability of native (N), unfolded (U), denatured (D), and intermediate (I) states.  相似文献   

18.
Proteins of largely unknown function related to the Sm proteins present in the core domain of eukaryotic small nuclear ribonucleoprotein particles have recently been detected in Archaea. In contrast to eukaryotes, Archaea contain maximally two distinct Sm-related proteins belonging to different subfamilies, we refer to as Sm1 and Sm2. Here we report the crystal structures of the Sm1- and Sm2-type proteins from the hyperthermophilic euryarchaeon Archaeoglobus fulgidus (AF-Sm1 and AF-Sm2) at a resolution of 2.5 and 1.95 A, respectively. While the AF-Sm1 protein forms a heptameric ring structure similar to that found in other archaeal Sm1-type proteins, the AF-Sm2 protein unexpectedly forms a homo-hexamer in the crystals, and, as is evident from the mass spectrometric analysis, also in solution. Both proteins have essentially the same monomer fold and inter-subunit beta-sheet hydrogen bonding giving rise to a similar overall architecture of the doughnut-shaped six and seven-membered rings. In addition, a conserved uracil-binding pocket identified previously in an AF-Sm1/RNA complex, suggests a common RNA-binding mode for the AF-Sm1 and AF-Sm2 proteins, in line with solution studies showing preferential binding to U-rich oligonucleotides for both proteins. Clear differences are however seen in the charge distribution within the two structures. The rough faces of the rings, i.e. the faces not containing the base binding pockets, have opposite charges in the two structures, being predominantly positive in AF-Sm1 and negative in AF-Sm2. Differences in the ionic interactions between subunits provide an explanation for the distinctly different oligomerisation behaviour of the AF-Sm1 and AF-Sm2 proteins and of Sm1- and Sm2-type proteins in general, as well as the stability of their complexes. Implications for the functions of archaeal Sm proteins are being discussed.  相似文献   

19.
20.
Historically referred to as "the GTPase center", the L11 binding region (L11BR) of Escherichia coli 23 S rRNA is a highly conserved structure that has been implicated in several essential functions during protein synthesis. Here, in vivo expression of an RNA fragment containing that structure was found to affect translation termination in a codon-specific manner. The cause of these effects appeared to be titration of ribosomal protein L11, since normal phenotypes could be restored by simultaneous overproduction of wild-type L11 but not mutant L11. Subsequently, altered termination phenotypes were produced when the availability of L11 was limited by overexpression of RNA antisense to L11 mRNA and, finally, by inactivation of the chromosomal L11 gene, and they too were reversible by simultaneous expression of cloned L11. Our results indicate that in the intact cell the L11BR is an integral functional unit important for translation termination and that the presence of L11 in ribosomes is required for UAG-dependent termination and is somewhat inhibitory of UGA-dependent termination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号