首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excessive activation of glutamate receptors and overproduction of proinflammatory cytokines, including interleukin-1β (IL-1β) in the spinal dorsal horn, are key mechanisms underlying the development and maintenance of neuropathic pain. In this study, we investigated the mechanisms by which endogenous IL-1β alters glutamatergic synaptic transmission in the spinal dorsal horn in rats with neuropathic pain induced by ligation of the L5 spinal nerve. We demonstrated that endogenous IL-1β in neuropathic rats enhances glutamate release from the primary afferent terminals and non-NMDA glutamate receptor activities in postsynaptic neurons in the spinal dorsal horn. Myeloid differentiation primary response protein 88 (MyD88) is a mediator used by IL-1β to enhance non-NMDA glutamate receptor activities in postsynaptic neurons in the spinal dorsal horn. Presynaptic NMDA receptors are effector receptors used by the endogenous IL-1β to enhance glutamate release from the primary afferents in neuropathic rats. This is further supported by the fact that NMDA currents recorded from small neurons in the dorsal root ganglion of normal rats are potentiated by exogenous IL-1β. Furthermore, we provided evidence that functional coupling between IL-1β receptors and presynaptic NMDA receptors at the primary afferent terminals is mediated by the neutral sphingomyelinase/ceramide signaling pathway. Hence, functional coupling between IL-1β receptors and presynaptic NMDA receptors at the primary afferent terminals is a crucial mechanism leading to enhanced glutamate release and activation of non-NMDA receptors in the spinal dorsal horn neurons in neuropathic pain conditions. Interruption of such functional coupling could be an effective approach for the treatment of neuropathic pain.  相似文献   

2.
Sensory input from peripheral nerves to the dorsal horn of the spinal cord is mediated by a variety of agents released by the central terminals of dorsal root ganglion (DRG) neurons. These include, but are not limited to, amino acids, especially glutamate, peptides and purines. The unraveling of the mechanisms of synaptic transmission by central terminals of DRG neurons has to take into account various ways in which the message from the periphery can be modulated at the level of the first central synapse. These include postsynaptic and presynaptic mechanisms. Homomeric and heteromeric complexes of receptor subunits for the different transmitters released by DRG neurons and interneurons, clustered at the postsynaptic site of central synapses, can be expressed in different combinations and their rate of insertion into the postsynaptic membrane is activity-regulated. Inhibitory mechanisms are an important part of central modulation, especially via presynaptic inhibition, currently believed to involve GABA released by inhibitory intrinsic neurons. Recent work has established the occurrence of another way by which sensory input can be modulated, i.e. the expression of presynaptic ionotropic and metabotropic receptors in central terminals of DRG neurons. Microscopic evidence for the expression, in these terminals, of various subunits of ionotropic glutamate receptors documents the selective expression of glutamate receptors in functionally different DRG afferents. Electrophysiological and pharmacological data suggest that activation of presynaptic ionotropic glutamate receptors in central terminals of DRG neurons may result in inhibition of release of glutamate by the same terminals. Glutamate activating presynaptic receptors may spill over from the same or adjacent synapses, or may be released by processes of astroglial cells surrounding synaptic terminals. The wide expression of presynaptic ionotropic glutamate receptors, especially in superficial laminae of the dorsal horn, where Adelta- and C fibers terminate, provides an additional or alternative mechanism, besides GABA-mediated presynaptic inhibition, for the modulation of glutamate release by these fibers. Since, however, presynaptic ionotropic glutamate receptors are also expressed in terminals of GABAergic intrinsic interneurons, a decrease of GABA release resulting from activation of these receptors in the same laminae, may also play a role in central sensitization and hyperalgesia.  相似文献   

3.
The actions of serotonin on frog primary afferent terminals and cell bodies   总被引:1,自引:0,他引:1  
The actions of serotonin (5-HT) were studied in the isolated frog spinal cord and dorsal root ganglion preparations. In the spinal cord, 5-HT increased the spontaneous activity recorded from dorsal roots, facilitated evoked spinal reflexes and produced fast and slow primary afferent depolarization (PAD). A direct action of 5-HT on primary afferent terminals is likely since 5-HT induced PAD remained in the presence of 1 microM tetrodotoxin and 2 mM Mn2+. The direct action of 5-HT on primary afferent terminals was blocked by methysergide and attenuated by concentrations of Mn2+ in excess of that required to block transmitter release. Cell bodies of the dorsal root ganglion were also depolarized by 5-HT. A slow hyperpolarization occasionally followed the initial depolarization. The depolarizing action of 5-HT in the dorsal root ganglion was also attenuated by treatment with Mn2+. It is concluded that 5-HT acts directly on frog primary afferents and that this influence may involve a calcium sensitive process. The dorsal root ganglion response to 5-HT appears to be a suitable model of the afferent terminal response.  相似文献   

4.
The vanilloid receptor VR1 (TRPV1) is a temperature- and capsaicin-sensitive cation channel expressed by a class of primary afferents involved in nociception. To confirm the hypothesis that VR1-positive primary afferents are glutamatergic and contact spinal neurons that express the main classes of ionotropic glutamate receptors, we performed multiple immunofluorescent staining for VR1 and the glutamate transporter VGLUT2 (a specific marker for glutamatergic transmission) or AMPA and NMDA receptor subunits. VR1-positive cells in the dorsal root ganglion and boutons of their central afferent fibers in the dorsal horn expressed VGLUT2, and the latter contacted AMPA- or NMDA receptor-positive perikarya. Based on our previous observations of preferential targeting of VR1-positive primary afferents to spinal neurons that express the neurokinin receptor NK1 (Hwang et al., 2003), we further quantified the frequency of termination of VR1-positive afferents onto NK1-positive neurons co-expressing glutamate receptors. A larger fraction of NK1/NMDA receptors-positive than NK1/AMPA receptors-positive sites were contacted by VR1-positive boutons. We conclude that VR1-positive primary afferents in the rat use glutamate as neurotransmitter and contact postsynaptic sites that co-express NK1 and ionotropic glutamate receptors.  相似文献   

5.
Taste receptor cells are innervated by primary gustatory neurons that relay sensory information to the central nervous system. The transmitter(s) at synapses between taste receptor cells and primary afferent fibers is (are) not yet known. By analogy with other sensory organs, glutamate might a transmitter in taste buds. We examined the presence of AMPA and NMDA receptor subunits in rat gustatory primary neurons in the ganglion that innervates the anterior tongue (geniculate ganglion). AMPA and NMDA type subunits were immunohistochemically detected with antibodies against GluR1, GluR2, GluR2/3, GluR4 and NR1 subunits. Gustatory neurons were specifically identified by retrograde tracing with fluorogold from injections made into the anterior portion of the tongue. Most gustatory neurons in the geniculate ganglion were strongly immunoreactive for GluR2/3 (68%), GluR4 (78%) or NR1 (71%). GluR1 was seen in few cells (16%). We further examined if glutamate receptors were present in the peripheral terminals of primary gustatory neurons in taste buds. Many axonal varicosities in fungiform and vallate taste buds were immunoreactive for GluR2/3 but not for NR1. We conclude that gustatory neurons express glutamate receptors and that glutamate receptors of the AMPA type are likely targeted to synapses within taste buds.  相似文献   

6.
This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold.  相似文献   

7.
Li S  An J  Sun CK  Li ZW 《生理学报》2004,56(3):384-388
应用全细胞膜片钳记录技术,在大鼠新鲜分离背根神经节(dorsal root ganglion,DRG)神经元上,观察预加咖啡因对GABA-激活电流(IGABA)的调制作用。实验中,大部分受检细胞(97.4%,l13/116)对外加GABA敏感。1-1000μmol/L GABA引起一剂量依赖性、有明显上敏感作用的内向电流。在受检的108个DRG细胞中,约有半数(53.7%,58/108)对胞外加咖啡因(0.1-100μmol/L)敏感.产生一幅值很小的内向电流。倾加咖啡因(0.1~100μmol/L)30s后再加GABA能明显抑制GABA(100μmol/L)激活电流的幅值。预加咖啡因后GABA量效曲线明显下移;GABA-激活电流的最人值较之对照下降约57%;而Kd值(30μmol/L)几乎不变,表示此种抑制为非竞争性的。预加安定(diazepam,1μmol/L)对GABA(100μmol/L)激活电流有增强作用,而预加咖啡因(10μmol/L)有拈抗安定增强IGABA的作用。胞内透析H-8后,几乎可以完全消除咖啡因对,IGABA的抑制作用。已知GABA作用于初级感觉神经元能引起初级传入去极化,因而实验结果提示,咖啡因有可能在初级传入末梢产生对抗突触前抑制的效应。  相似文献   

8.
We report that kainate receptors are present on presynaptic GABAergic terminals contacting interneurons and that their activation increases GABA release. Application of kainate increased the frequency of miniature inhibitory postsynaptic currents recorded in CA1 interneurons. Local applications of glutamate but not of AMPA or NMDA also increased GABA quantal release. Application of kainate as well as synaptically released glutamate reduced the number of failures of GABAergic neurotransmission between interneurons. Thus, activation of presynaptic kainate receptors increases the probability of GABA release at interneuron-interneuron synapses. Glutamate may selectively control the communication between interneurons by increasing their mutual inhibition.  相似文献   

9.
The synaptic effectiveness of sensory fibers ending in the spinal cord of vertebrates can be centrally controlled by means of specific sets of GABAergic interneurons that make axo-axonic synapses with the terminal arborizations of the afferent fibers. In the steady state, the intracellular concentration of chloride ions in these terminals is higher than that predicted from a passive distribution, because of an active transport mechanism. Following the release of GABA by spinal interneurons and activation of GABA(A) receptors in the afferent terminals, there is an outwardly directed efflux of chloride ions that produces primary afferent depolarization (PAD) and reduces transmitter release (presynaptic inhibition). Studies made by intrafiber recording of PAD, or by measuring changes in the intraspinal threshold of single afferent terminals (which is reduced during PAD), have further indicated that muscle and cutaneous afferents have distinctive, but modifiable PAD patterns in response to segmental and descending stimuli. This has suggested that PAD and presynaptic inhibition in the various types of afferents is mediated by separate sets of last-order GABAergic interneurons. Direct activation, by means of intraspinal microstimulation, of single or small groups of last-order PAD-mediating interneurons shows that the monosynaptic PAD elicited in Ia and Ib afferents can remain confined to some sets of the intraspinal collaterals and not spread to nearby collaterals. The local character of PAD allows cutaneous and descending inputs to selectively inhibit the PAD of segmental and ascending intraspinal collaterals of individual muscle spindle afferents. It thus seems that the intraspinal branches of the sensory fibers are not hard wired routes that diverge excitation to spinal neurons, but are instead dynamic pathways that can be centrally controlled to address information to selected neuronal targets. This feature appears to play an important role in the selection of information flow in muscle spindles that occurs at the onset of voluntary contractions in humans.  相似文献   

10.
Kerchner GA  Li P  Zhuo M 《IUBMB life》1999,48(3):251-256
Severe tissue or nerve injury can result in a chronic and inappropriate sensation of pain, mediated in part by the sensitization of spinal dorsal horn neurons to input from primary afferent fibers. Synaptic transmission at primary afferent synapses is mainly glutamatergic. Although a functioning excitatory synapse contains both alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the postsynaptic membrane, recent evidence suggests that dorsal horn neurons contain some "silent" synapses, which exhibit purely NMDA receptor-mediated evoked postsynaptic currents and do not conduct signals at resting membrane potential. Serotonin, which is released onto dorsal horn neurons by descending fibers from the rostroventral medulla, potentiates sensory transmission by activating silent synapses on those neurons, i.e., by recruiting functional AMPA receptors to the postsynaptic membrane. This phenomenon may contribute to the hyperexcitability of dorsal horn neurons seen in chronic pain conditions.  相似文献   

11.
In the isolated frog spinal cord perfused with kainic acid (KA, 5 X 10(-4) M) containing Ringer's solution, within 2 hr there were increases in the amplitude of the dorsal root depolarization, as induced by the GABA-agonists. KA perfusion produced increases in the specific binding of [3H]muscimol to crude synaptic membranes and incubation with KA for 3 hr did not increase [3H]muscimol binding. [3H]GABA was released from KA-treated spinal cord slices in the presence of high K+. KA-induced supersensitivity of the dorsal root to GABA may relate to direct actions on primary afferent terminals and not to denervation of GABAergic neurons.  相似文献   

12.
The kainate subtype of glutamate receptors has received considerable attention in recent years, and a wealth of knowledge has been obtained regarding the function of these receptors. Kainate receptors have been shown to mediate synaptic transmission in some brain regions, modulate presynaptic release of glutamate and gamma-aminobutyric acid (GABA), and mediate synaptic plasticity or the development of seizure activity. This article focuses on the function of kainate receptors in the amygdala, a brain region that plays a central role in emotional behavior and certain psychiatric illnesses. Evidence is reviewed indicating that postsynaptic kainate receptors containing the glutamate receptor 5 kainate receptor (GLUk5) subunit are present on interneurons and pyramidal cells in the basolateral amygdala and mediate a component of the synaptic responses of these neurons to glutamatergic input. In addition, GLUk5-containing kainate receptors are present on presynaptic terminals of GABAergic neurons, where they modulate the release of GABA in an agonist concentration-dependent, bidirectional manner. GLUk5-containing kainate receptors also mediate a longlasting synaptic facilitation induced by low-frequency stimulation in the external capsule to the basolateral nucleus pathway, and they appear to be partly responsible for the susceptibility of the amygdala to epileptogenesis. Taken together, these findings have suggested a prominent role of GLUk5-containing kainate receptors in the regulation of neuronal excitability in the amygdala.  相似文献   

13.
Although GABA and piperidine-4-sulphonic acid depolarize I a afferent terminations in the cat spinal cord by activation of bicuculline-sensitive GABA receptors, no evidence was obtained for a bicuculline-sensitive alteration by either gabamimetic of the electrical threshold of rubrospinal terminations in the spinal intermediate nucleus. The terminal axonal arborizations in the spinal cord of neurons in the red nucleus thus do not have GABA receptors similar to those on the cell bodies. The results are discussed in relation to the depolarizing action of GABA on some central neurons, and on neurons with peripheral cell bodies, and to probable differences in the intracellular chloride content of neurons having peripheral or central cell bodies, and thus of different embryological origin. A presynaptic depolarizing inhibitory process mediated by GABA appears to be confined to the terminals of primary afferent fibres in the mammalian central nervous system.  相似文献   

14.
GABA_A和GABA_B受体介导的蟾蜍背根神经节神经元胞体膜反应   总被引:2,自引:0,他引:2  
实验在蟾蜍离体背根神经节(DRG)标本进行细胞内记录。浴槽滴加10~(-4)-10~(-3)mol/LGABA引起膜电位改变如下:(1)去极化(79/100);(2)双相反应;先为去极化,继后为超极化(10/100);(3)无反应(11/100)。以上去极化反应均可为荷包牡丹碱所阻断。GABA-去极化时膜电导增加,逆转电位值为-15——25mV。低Cl~-和高Cl~-任氏液分别使GABA-去极化反应增大和减小。10~(-4)mol/Lbaclofen不引起膜电位改变。在GABA-去极化期间,观察到大部分细胞的动作电位时程(ApD)缩短。ApD的此种变化可为baclofen所模拟,但不为荷包牡丹碱所阻断。结果提示:蟾蜍DRG神经元胞体膜有GABA_A和GABA_B受体共存,前者介导膜电位的改变,后者介导ApD的缩短。本文并联系到初级传入终末的突触前抑制的产生机制进行了讨论。  相似文献   

15.
病理性疼痛的分子机制   总被引:2,自引:0,他引:2  
张旭 《生命科学》2008,20(5):707-708
持续性或慢性疼痛是很多患者的主要描述症状。然而,现在的治疗手段还不能充分解决某些疼痛或会引起不能忍受的副作用。近来疼痛生物学者阐明了大量的参与疼痛发生和维持的细胞和分子活动。如何更好的理解这些分子活动的机制将有助于发展高效的,特异性的治疗手段。背根神经节中小细胞神经元向脊髓传递温觉和伤害性信息的感觉传递。这些神经元的外周突感受生理性和化学性刺激后,可以在脊髓背角的中枢突通过突触囊泡和大致密性囊泡释放兴奋性的神经递质和神经肽。这种兴奋性突触传递可以被一些抑制因子调控如脊髓中间神经元和下行系统中分泌的阿片肽、GABA、甘氨酸、5-羟色胺。本文将回顾脊髓抑制性系统所取得的一些研究进展,将重点介绍在阿片受体转运,阿片镇痛以及吗啡耐晋研究中的进展,这些发现可能的治疗前景也会一并讨论。  相似文献   

16.
The mechanism of primary afferent depolarization (PAD) was studied in the isolated frog spinal cord using intrafibre recording (microelectrodes filled with 0.6 M potassium sulfate) from large myelinated axons of dorsal roots. Standard current-clamp technique was used to obtain voltage-current (V-I) relationship. It was found that: (i) PAD is voltage dependent: its amplitude and rate of rise are increased with hyperpolarization; (ii) the slope of the linear part of the V-I curve obtained during PAD is decreased compared with the V-I curve at rest; (iii) the PAD equilibrium potential, estimated by extrapolation, ranged from -66 to -40 mV. These results suggest that PAD is associated with an increase in conductance of primary afferent terminals and thus seem to provide the first experimental evidence for the hypothesis that shunting of primary afferent membrane is the mechanism of presynaptic inhibition in the vertebrate nervous system.  相似文献   

17.
The relative contribution of kainate receptors to ongoing glutamatergic activity is at present unknown. We report the presence of spontaneous, miniature, and minimal stimulation-evoked excitatory postsynaptic currents (EPSCs) that are mediated solely by kainate receptors (EPSC(kainate)) or by both AMPA and kainate receptors (EPSC(AMPA/kainate)). EPSC(kainate) and EPSC(AMPA/kainate) are selectively enriched in CA1 interneurons and mossy fibers synapses of CA3 pyramidal neurons, respectively. In CA1 interneurons, the decay time constant of EPSC(kainate) (circa 10 ms) is comparable to values obtained in heterologous expression systems. In both hippocampal neurons, the quantal release of glutamate generates kainate receptor-mediated EPSCs that provide as much as half of the total glutamatergic current. Kainate receptors are, therefore, key players of the ongoing glutamatergic transmission in the hippocampus.  相似文献   

18.
The effects of GABA, bicuculline and 5-HT on primary afferents in the isolated spinal cord of the frog Rana ridibunda were studied. Bath application of GABA (1 mM) reduced the primary afferent depolarisation (PAD) in IX segment of the spinal cord evoked by X dorsal root stimulation (57 +/- 8% of initial level, n = 5, p < 0.05). The action potentials (AP) recorded in dorsal root afferents was also suppressed under the GABA action (74 +/- 9%, p < 0.05). Bath application of bicuculline (50 microM) reduced the PAD (21 +/- 7%), n = 6, p < 0.05), meanwhile the AP in dorsal root afferents was resistant against the bicuculline action. Bath application of 5-HT (25 microM) depressed the PAD (34 +/- 7%, n = 7, p < 0.05) and the amplitude of the AP recorded from the single afferent fibre in dorsal column (76 +/- 6%, n = 7, p < 0.05). In contrast to GABA, 5-HT more effectively suppressed the late phase of the PAD evoked by X dorsal root stimulation and caused (76 +/- 6%, n = 7, p < 0.05) an alteration of the AP shape. All effects induced by these drugs were reversible. The mechanisms of GABA and 5-HT modulation of spinal cord afferent income are discussed.  相似文献   

19.
A glutamate receptor channel with high affinity for domoate and kainate.   总被引:6,自引:0,他引:6  
The non-NMDA family of glutamate receptors comprises a growing number of structurally related subunits (GluR-A to -D or -1 to -4; GluR-5, -6; KA-1). GluR-A to -D appear to constitute the major AMPA receptor subtypes but the functional and pharmacological characteristics of the other subunits are unresolved. Using a mammalian expression system we demonstrate here that homomeric GluR-5 receptors exhibit properties of a high affinity domoate (KD approximately 2 nM) and kainate (KD approximately 70 nM) binding site. For these receptors, the rank order of ligands competing with [3H]kainate binding was domoate much greater than quisqualate approximately glutamate much greater than AMPA approximately CNQX. The respective receptor channels were gated in decreasing order of sensitivity by domoate, kainate, glutamate and AMPA. In contrast to recombinantly expressed GluR-A to -D channels, currents elicited at GluR-5 receptor desensitize channels to all agonists. This property is characteristic of currents in peripheral neurons on sensory ganglia. These findings suggest the existence of at least two distinct types of non-NMDA receptor channels, both gated by AMPA and kainate, but differing in pharmacology and current properties.  相似文献   

20.
Effects of application of glutamate and glutamatergic ligands were studied to characterize the receptors for glutamate present on the soma membrane of the dorsal unpaired median (DUM) neurons in the thoracic ganglia of the cockroach, Periplaneta americana, using the intracellular recording technique. Application of L-glutamate did not block the GABA-response, and application of beta-guanidino-propionic acid, a competitive antagonist for GABA, failed to block the response to L-glutamate. These results indicate that most of L-glutamate action may not be mediated by a GABA-activated channel. To examine glutamate receptor types on the DUM neurons, glutamate receptor agonists were applied. The ionotropic glutamate receptor (iGluR) agonists evoked depolarizations with the following relative rank of order of potency: kainate > AMPA > quisqualate. Metabotropic glutamate receptor (mGluR) agonists also elicited membrane depolarizations or hyperpolarizations associated with an increase in membrane conductance. The mGluR agonists evoked depolarizations or hyperpolarizations with the following relative rank of order: L-CCG-1 > 1S, 3R-ACPD > L-AP4. Depolarization of the same DUM neuron was detected following exposure of kainate and L-CCG-I, suggesting the coexistence of distinct iGluR and mGluR types. A membrane permeable cAMP analog, CPT-cAMP, could not mimic the effect of mGluR agonists. The mGluR selective antagonists, MCCG and MCPG, failed to antagonize the response to mGluR agonists. The involvement of cAMP in the mGluR response was not confirmed in DUM neurons. Although the functional roles of these receptors are unknown, it might be possible then that these extrasynaptic receptors have a modulatory effect on the excitability of the DUM neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号