首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 棕色固氮菌固氮酶钼铁蛋白八聚体相当于两个钼铁蛋白四聚体的聚合体。在细胞生长过程中,胞内钼铁蛋白两种聚合体的相对含量出现规律性变化:在对数期,细胞固氮酶比活力成上升趋势,而钼铁蛋白主要以高活力的四聚体形式存在;在对数期结束至稳定期,细胞固氮酶比活力下降至一个低水平的稳定值,此时的钼铁蛋白基本上为八聚体形态。在细胞固氮生长时,向培养基中加入过量氨可明显地导致钼铁蛋白由四聚体向八聚体的转化。我们推断,生长过程中胞内钼铁蛋白聚合态的变化可能是调节固氮酶活力的一种方式。胞外,钼铁蛋白的两种聚合态可以相互转化。  相似文献   

2.
Rhodopseudomonas viridis ATCC 19567 grows by means of nitrogen fixation in yeast extract-N2 or nitrogen-free medium when sparged with 5% CO2 and 95% N2 in the light at 30 degrees C. Acetylene reduction assays for nitrogenase activity revealed an initially high level of activity during early-logarithmic growth phase, a lower plateau during mid- to late-logarithmic phase, and a dramatic reduction of activity at the beginning of the stationary phase. When viewed by electron microscopy, nitrogen-fixing R. viridis cells appeared to be morphologically and ultrastructurally similar to cells grown on nitrogen-rich media. Whole cells prepared under reducing conditions in the dark for electron spin resonance spectroscopy yielded g4.26 and g3.66 signals characteristic of the molybdenum-iron protein of nitrogenase. During growth on N2 in the absence of fixed-nitrogen sources, the nitrogenase activity of R. viridis measured by acetylene reduction stopped rapidly in response to the addition of NH4Cl as has been observed in other Rhodospirillaceae. However, unlike the nitrogenase of Rhodopseudomonas palustris or Rhodospirillum rubrum, which recover from this treatment within 40 min, the nitrogenase activity of R. viridis was not detectable for nearly 4 h.  相似文献   

3.
Docking of the nitrogenase component proteins, the iron protein (FeP) and the molybdenum-iron protein (MoFeP), is required for MgATP hydrolysis, electron transfer between the component proteins, and substrate reductions catalyzed by nitrogenase. The present work examines the function of 3 charged amino acids, Arg 140, Glu 141, and Lys 143, of the Azotobacter vinelandii FeP in nitrogenase component protein docking. The function of these amino acids was probed by changing each to the neutral amino acid glutamine using site-directed mutagenesis. The altered FePs were expressed in A. vinelandii in place of the wild-type FeP. Changing Glu 141 to Gln (E141Q) had no adverse effects on the function of nitrogenase in whole cells, indicating that this charged residue is not essential to nitrogenase function. In contrast, changing Arg 140 or Lys 143 to Gln (R140Q and K143Q) resulted in a significant decrease in nitrogenase activity, suggesting that these charged amino acid residues play an important role in some function of the FeP. The function of each amino acid was deduced by analysis of the properties of the purified R140Q and K143Q FePs. Both altered proteins were found to support reduced substrate reduction rates when coupled to wild-type MoFeP. Detailed analysis revealed that changing these residues to Gln resulted in a dramatic reduction in the affinity of the altered FeP for binding to the MoFeP. This was deduced in FeP titration, NaCl inhibition, and MoFeP protection from Fe2+ chelation experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Rhodopseudomonas palustris cells grown on limiting nitrogen produced four- to eightfold higher nitrogenase specific activity relative to cells sparged with N2. The high activity of N-limited cells was the result of overproduction of the nitrogenase proteins. This was shown by four independent techniques: (i) titration of the Mo-Fe protein in cell-free extracts with Fe protein from Azotobacter vinelandii; (ii) direct detection of the subunits of Mo-Fe protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; (iii) monitoring of the electron paramagnetic resonance spectrum of Mo-Fe protein in whole cells; and (iv) immunological assay of the Fe protein level with an antiserum against the homologous protein of Rhodospirillum rubrum. The derepressed level of nitrogenase found in N2-grown cells was not due to an increased turnover of nitrogenase. The apparent half-lives of nitrogenase in N2-grown and N-limited cells were 58 and 98 h, respectively, but were too long to account for the difference in enzyme level. Half-lives were determined by measuring nitrogenase after repression of de novo synthesis by ammonia and subsequent release of nitrogenase switch-off by methionine sulfoximine. Observations were extended to R. rubrum, Rhodopseudomonas capsulata, and Rhodomicrobium vannielii and indicated that overproduction of nitrogenase under nitrogen limitation is not an exceptional property of R. palustris, but rather a general property of phototrophic bacteria.  相似文献   

5.
Mutants of Azotobacter vinelandii ATCC 12837 were isolated which could fix N2 in the presence of high tungsten concentrations. The most studied of these mutants (WD2) grew well in N-free modified Burk broth containing 10 mM W, whereas the wild type would not grow in this medium. WD2 would also grow in Burk N-free broth at about the same rate as the wild type. WD2 in broth containing W exhibited 22% of the whole cell acetylene reduction activity of the wild type in broth containing Mo and showed a lowered affinity for acetylene. Two-dimensional gel electrophoresis experiments showed that N2-fixing cells of WD2 from broth containing W or Mo did not produce significant amounts of component I of native nitrogenase protein. Electron spin resonance spectra of whole cells and cell-free extracts of WD2 from broth containing W lacked any trace of the g = 3.6 resonance associated with FeMoCo.  相似文献   

6.
Electrochemical and EPR spectroscopic experiments demonstrate that the isolated iron-molybdenum cofactor from the molybdenum-iron protein of nitrogenase from Azotobacter vinelandii exists in multiple forms in both its oxidized and semi-reduced states. The particular forms found in either oxidation state appear to be a function of the acid/base status of the solvent, N-methylformamide. In "alkaline" N-methylformamide, a single, detectable form of iron-molybdenum cofactor is observed for both oxidized and semi-reduced states. The semi-reduced form, termed R(s-r), is the one previously recognized with an S = 3/2 EPR spectrum with apparent g values of 4.6, 3.4, 2.0. Its oxidized counterpart, termed B(ox), is characterized electrochemically by a differential pulse voltammetric reduction peak at -0.37 V versus the normal hydrogen electrode. In "acidic" solvent, two distinct, previously unrecognized redox pairs of iron-molybdenum cofactor forms exist. The two semi-reduced forms, N(s-r) and W(s-r), are characterized by EPR spectra with g = 4.5, 3.6, 2.0 and g = 4.9, 3.1, 1.9, respectively. Their oxidized counterparts, A(ox) and C(ox), have differential pulse voltammetric reduction peaks at -0.32 and -0.43 V versus the normal hydrogen electrode, respectively. Manipulations of either the isolation protocol or the sample conditions affects both the type and distribution of forms present. Each form likely corresponds to a biologically significant state of the cofactor cluster within the protein.  相似文献   

7.
1. The molybdenum-iron (Mo-Fe) protein, iron (Fe) protein and the activating factor of nitrogenase from Rhodospirillum rubrum were purified. 2. The Mo-Fe protein has properties similar to those of the Mo-Fe proteins of other nitrogen-fixing organisms. 3. The Fe protein is similar to other Fe proteins with respect to its molecular weight, metal composition and e.p.r. signal. 4. The Fe protein is different from other Fe proteins in that it apparently has two types of subunits rather than one, its u.v. spectrum has an extra peak, and phosphate, ribose and an adenine-like unit are covalently bound to the protein. The presence of these non-protein groups on the protein may explain the requirement for activation of R. rubrum Fe protein.  相似文献   

8.
Abstract The regulatory properties of Rhodospirillum rubrum nitrogenase reduced by either the endogenous electron donor (ferredoxin) or an artificial donor (dithionite) were examined. The nitrogenase obtained from glutamate-grown cells required activating enzyme for maximum activity with either reductant. The activating enzyme requirement of ferredoxin-dependent nitrogenase activity implies a physiological significance of the activating enzyme in R. rubrum. Rhodopseudomonas capsulata nitrogenase also required activating enzyme when dithionite was the reductant, but there appeared to be no activating enzyme requirement with ferredoxin as the reductant. Because the catalytic activity of the enzyme was very low under these conditions, the physiological significance of activating enzyme in this organism remains in question.  相似文献   

9.
Nitrogenase activity of 'membrane-free' extracts, produced from nitrogen-starved Rhodospirillum rubrum to which 4 mM NH4+ had been added is only about 10% of the activity in the control. The activity could be restored to 80% by including the membrane component, earlier found to activate R. rubrum nitrogenase, in the reaction mixture. The relation between this 'switch-off/switch-on' effect and the function of the membrane component is discussed. Hydrogen production catalyzed by R. rubrum nitrogenase is also dependent on activation by the membrane component. Hydrogen production is inhibited by acetylene but the degree of inhibition is dependent on the nitrogenase component ratio. The strongest inhibition is achieved at low MoFe protein/Fe protein rations. The ATP/2E- values are 4-5 at the component ratios giving the highest activity and increase at high MoFe protein/Fe protein ratios. CO inhibits acetylene reduction but has no effect on the hydrogen production.  相似文献   

10.
The nitrogenase-regulating enzymes dinitrogenase reductase ADP-ribosyltransferase (DRAT) and dinitrogenase reductase-activating glycohydrolase (DRAG), from Rhodospirillum rubrum, were shown to be sensitive to the redox status of the [Fe(4)S(4)](1+/2+) cluster of nitrogenase Fe protein from R. rubrum or Azotobacter vinelandii. DRAG had <2% activity with oxidized R. rubrum Fe protein relative to activity with reduced Fe protein. The activity of DRAG with oxygen-denatured Fe protein or a low molecular weight substrate, N(alpha)-dansyl-N(omega)-(1,N(6)-etheno-ADP-ribosyl)-arginine methyl ester, was independent of redox potential. The redox midpoint potential of DRAG activation of Fe protein was -430 mV versus standard hydrogen electrode, coinciding with the midpoint potential of the [Fe(4)S(4)] cluster from R. rubrum Fe protein. DRAT was found to have a specificity opposite that of DRAG, exhibiting low (<20%) activity with 87% reduced R. rubrum Fe protein relative to activity with fully oxidized Fe protein. A mutant of R. rubrum in which the rate of oxidation of Fe protein was substantially decreased had a markedly slower rate of ADP-ribosylation in vivo in response to 10 mM NH(4)Cl or darkness stimulus. It is concluded that the redox state of Fe protein plays a significant role in regulation of the activities of DRAT and DRAG in vivo.  相似文献   

11.
Wild-type Azotobacter vinelandii strain UW was transformed with plasmid pDB12 to produce a species (LS10) unable to synthesize the structural proteins of component 1 and component 2 of native nitrogenase. A spontaneous mutant of this strain was isolated (LS15) which can grow by nitrogen fixation in the presence or absence of either Mo or W. It is proposed that LS15 fixes nitrogen solely by an alternative nitrogen-fixing system which previously has been hypothesized to exist in A. vinelandii. Under nitrogen-fixing conditions, LS15 synthesizes a protein similar to component 2 (Av2) of native nitrogenase in that it can complement native component 1 (Av1) for enzymatic activity. Isolation and characterization of this second component 2 shows it to be a 4Fe-4S protein of molecular mass about 62 kDa and is antigenically similar to Av2. This protein is also similar to Av2 in that in the reduced state it possesses a rhombic ESR spectrum in the g = 2 region, which changes to an axial spectrum upon addition of MgATP. It is suggested that this second Fe-protein is associated with the alternative nitrogen-fixing system in A. vinelandii.  相似文献   

12.
Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii   总被引:22,自引:0,他引:22  
A new nitrogenase from Azotobacter vinelandii has been isolated and characterized. It consists of two proteins, one of which is almost identical with the Fe protein (component 2) of the conventional enzyme. The second protein (Av1'), however, has now been isolated and shown to differ completely from conventional component 1, i.e., the MoFe protein. This new protein consists of two polypeptides with a total molecular weight of around 200,000. In place of Mo and Fe it contains V and Fe with a V:Fe ratio of 1:13 +/- 3. The ESR spectrum of Av1' also differs from conventional component 1 in that lacks the g = 3.6 resonance that arises from the FeMo cofactor but contains an axial signal with gav less than 2 as well as inflections in the g = 4-6 region possibly arising from an S = 3/2 state. This new enzyme can reduce dinitrogen, protons, and acetylene but is only able to utilize 10-15% of its electrons for the reduction of acetylene.  相似文献   

13.
The interactions of the iron-molybdenum cofactor, FeMoco, isolated from acid-treated Azotobacter vinelandii molybdenum-iron protein (Av1) with EDTA and thiophenol in N-methylformamide solution have been reinvestigated. Our studies show that EDTA alone is sufficient to eliminate the EPR signal of dithionite-reduced FeMoco. Neither light/5-deazaflavin nor carbon monoxide are required, which implies that this EPR-silent form of FeMoco does not correspond to the EPR-silent, substrate-reducing state of Av1. As EDTA-treated FeMoco does not regain EPR activity on addition of sodium dithionite or thiophenol, it is apparently distinct from the EPR-silent form of either dye-oxidized FeMoco or dye-oxidized Av1. Thiophenol sharpens the EPR signal of dithionite-reduced FeMoco and shifts the g = 3.3 feature to g = 3.6. This shift is complete at 1:1 ratio of thiophenol/Mo atom, while the EDTA effect requires about 40 molecules/Mo atom. Thiophenol and EDTA probably affect different sites of FeMoco. The binding of either reactant does not affect the activity of FeMoco as measured by its ability to reconstitute extracts of A. vinelandii mutant UW45.  相似文献   

14.
K E Brigle  W E Newton  D R Dean 《Gene》1985,37(1-3):37-44
DNA fragments coding for the structural genes for Azotobacter vinelandii nitrogenase have been isolated and sequenced. These genes, nifH, nifD and nifK, code for the iron (Fe) protein and the alpha and beta subunits of the molybdenum-iron (MoFe) protein, respectively. They are arranged in the order: promoter:nifH:nifD:nifK. There are 129 nucleotides separating nifH and nifD and 101 nucleotides separating nifD and nifK. The amino acid (aa) sequences deduced from the nucleotide sequences are discussed in relation to the prosthetic group-binding regions of the nifHDK-encoded polypeptides.  相似文献   

15.
An immunocytochemical ultrastructural study of Rhodospirillum rubrum cultured under semiaerobic conditions was conducted to correlate the localization of functional components with membrane formation. R. rubrum is a facultatively phototrophic organism. Under reduced oxygen, this bacterium forms an intracytoplasmic chromatophore membrane that is the site of the photosynthetic apparatus. Immunogold techniques were used to localize intracellular protein antigens associated with the photosynthetic apparatus. Antibody, demonstrated by immunoblotting to be specific for the reaction center and light-harvesting photochemical components, was conjugated to colloidal gold particles and used for direct immunolabeling of fixed, sectioned specimens. Membrane invaginations appeared by 4 h after transition to induction conditions, and mature chromatophore membrane was abundant by 22 h. The occurrence of chromatophore membrane was correlated with bacteriochlorophyll a content and the density of the immunolabel. In uninduced (aerobic) cells and those obtained from cultures 0.5 h posttransition, the immunogold preferentially labeled the peripheral area of the cell. In contrast, in cells obtained after 22 h of induction, the central region of the cell was preferentially immunolabeled. These findings provided immunocytochemical evidence supporting the hypothesis that the chromatophore membrane is formed by invagination of the cytoplasmic membrane.  相似文献   

16.
The nitrogenase catalytic cycle involves binding of the iron (Fe) protein to the molybdenum-iron (MoFe) protein, transfer of a single electron from the Fe protein to the MoFe protein concomitant with the hydrolysis of at least two MgATP molecules, followed by dissociation of the two proteins. Earlier studies found that combining the Fe protein isolated from the bacterium Clostridium pasteurianum with the MoFe protein isolated from the bacterium Azotobacter vinelandii resulted in an inactive, nondissociating Fe protein-MoFe protein complex. In the present work, it is demonstrated that primary electron transfer occurs within this nitrogenase tight complex in the absence of MgATP (apparent first-order rate constant k = 0.007 s-1) and that MgATP accelerates this electron transfer reaction by more than 10,000-fold to rates comparable to those observed within homologous nitrogenase complexes (k = 100 s-1). Electron transfer reactions were confirmed by EPR spectroscopy. Finally, the midpoint potentials (Em) for the Fe protein [4Fe-4S]2+/+ cluster and the MoFe protein P2+/N cluster were determined for both the uncomplexed and complexed proteins and with or without MgADP. Calculations from electron transfer theory indicate that the measured changes in Em are not likely to be sufficient to account for the observed nucleotide-dependent rate accelerations for electron transfer.  相似文献   

17.
Effect of oxygen on acetylene reduction by photosynthetic bacteria   总被引:9,自引:7,他引:2       下载免费PDF全文
The effect of dissolved oxygen concentration on nitrogenase activity was studied in three species of photosynthetic bacteria. The O2 concentration in the cell suspension was measured with an O2 electrode inserted into the reaction vessel. Acetylene reduction by whole cells of Rhodopseudomonas capsulata, Rhodospirillum rubrum, and Chromatium vinosum strain D was inhibited 50% by 0.73, 0.32, and 0.26 microM O2, respectively. The inhibition of the activity by O2 in R. capsulata usually was reversed completely by reestablishing anaerobic conditions. In R. rubrum and C. vinosum the inhibition was only partially reversible. The respiration rate of R. capsulata was the highest of the three, that of R. rubrum was intermediate, and that of C. vinosum was lowest. R. capsulata and R. rubrum cells were broken after their acetylene reduction activity in vivo had been completely inhibited by O2, and nitrogenase was found to be active in vitro. A concentration of cyanide that did not affect acetylene reduction activity, but which inhibited 75 to 90% of the O2 uptake by whole cells of R. capsulata, shifted the O2 concentration causing 50% inhibition of nitrogenase activity from 0.73 microM to 2.03 microM. These results are in accordance with the assumption that within a limited range of O2 concentrations, the respiratory activity of the cells is enough to scavenge the O2 and to keep the interior of the cells essentially anaerobic. It is suggested that O2 inhibits nitrogenase activity by competing for a limited supply of electrons. When cyanide is present, respiration is slower but is adequate to keep the nitrogenase environment in the cell anaerobic. The lower respiration rate may allow a greater proportion of the electrons to be used for acetylene reduction.  相似文献   

18.
The molybdenum-iron protein of Azotobacter vinelandii nitrogenase was separated into two subunits of equal concentration by ion exchange chromatography on sulfopropyl (SP) Sephadex at pH 5.4 in 7 M urea. Better than 90% yield of each subunit was obtained on a preparative scale if the reduced carboxymethylated molybdenum-iron protein was incubated at 45 degrees C for 45 min prior to chromatography. Without the heating step low yields of the subunits were obtained. Although the amino acid compositions of the two subunits were very similar, the NH2-terminal sequences were completely different as determined by automated sequential Edman degradation. The sequence for the alpha subunit was NH2-Ser-Gln-Gln-Val-Asp-Lys-Ile-Lys-Ala-Ser-Tyr-Pro-Leu-Phe-Leu-Asp-Gln-Asp-Tyr- and for the beta subunit the sequence was NH2-Thr-Gly-Met-Ser-Arg-Glu-Glu-Val-Glu-Ser-Leu-Ile-Gln-Glu-Val-Leu-Glu-Val-Tyr-. Likewise the COOH-terminal sequences for the two subunits, as determined with carboxypeptidase Y, were tota-ly different. The sequence for the alpha subunit was -Leu-Arg-Val-COOH and that for the beta subunit was -Ile-(Phe, Glu)-Ala-Phe-COOH. Radioautographs of tryptic peptide maps were prepared for the molybdenum-iron protein and the two subunits which had been labeled at the cysteinyl residues with iodo[2-14C]acetic acid. These maps indicated that the two subunits had no cysteinyl peptides in common and that the cysteinyl residues were clustered in both subunits.  相似文献   

19.
Acetylene reduction by nitrogenase from Rhodospirillum rubrum, unlike that by other nitrogenases, was recently found by other investigators to require an activation of the iron protein of nitrogenase by an activating system comprising a chromatophore membrane component, adenosine 5'-triphosphate (ATP), and divalent metal ions. In an extension of this work, we observed that the same activating system was also required for nitrogenase-linked H(2) evolution. However, we found that, depending on their nitrogen nutrition regime, R. rubrum cells produced two forms of nitrogenase that differed in their Fe protein components. Cells whose nitrogen supply was totally exhausted before harvest yielded predominantly a form of nitrogenase (A) whose enzymatic activity was not governed by the activating system, whereas cells supplied up to harvest time with N(2) or glutamate yielded predominantly a form of nitrogenase (R) whose enzymatic activity was regulated by the activating system. An unexpected finding was the rapid (less than 10 min in some cases) intracellular conversion of nitrogenase A to nitrogenase R brought about by the addition to nitrogen-starved cells of glutamine, asparagine, or, particularly, ammonia. This finding suggests that mechanisms other than de novo protein synthesis were involved in the conversion of nitrogenase A to the R form. The molecular weights of the Fe protein and Mo-Fe protein components from nitrogenases A and R were the same. However, nitrogenase A appeared to be larger in size, because it had more Fe protein units per Mo-Fe protein than did nitrogenase R. A distinguishing property of the Fe protein from nitrogenase R was its ATP requirement. When combined with the Mo-Fe protein (from either nitrogenase A or nitrogenase R), the R form of Fe protein required a lower ATP concentration but bound or utilized more ATP molecules during acetylene reduction than did the A form of Fe protein. No differences between the Fe proteins from the two forms of nitrogenase were found in the electron paramagnetic resonance spectrum, midpoint oxidation-reduction potential, or sensitivity to iron chelators.  相似文献   

20.
The rate of proton extrusion by whole cells of Rhodospirillum rubrum is constant on a bacteriochlorophyll basis only above cellular bacteriochlorophyll concentrations of about 10 nmol bacteriochlorophyll per mg cell protein. At specific bacteriochlorophyll cellular levels below this value, the rate of proton extrusion per bacteriochlorophyll increases. Correspondingly, membrane preparations isolated from these cells exhibit increases in the rate of proton uptake on a pigment basis. Concomitant with variations in the rates of proton extrusion by whole cells, light energy fluxes for saturating this process also vary. A fair proportionality between maximum rates of proton extrusion of whole cells and the bacteriochlorophyll cellular levels above 10 nmol per mg protein indicates that the degree of continuity of intracytoplasmic membranes and of the cytoplasmic membrane remains largely constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号