共查询到20条相似文献,搜索用时 15 毫秒
1.
The correct spatial and temporal control of Ca2+ signaling is essential for such cellular activities as fertilization, secretion, motility, and cell division. There has been a long-standing interest in the role of caveolae in regulating intracellular Ca2+ concentration. In this review we provide an updated view of how caveolae may regulate both Ca2+ entry into cells and Ca2+ -dependent signal transduction 相似文献
2.
钙-钙调素信号系统参与热激信号转导的研究 总被引:3,自引:0,他引:3
根据作者实验室的研究工作结合国内外的研究动态讨论热激信号转导的Ca2 -CaM途径。作者实验室的工作表明,钙一钙调素(Ca^2 -CaM)信号系统参与植物热激信号转导。激光共聚焦扫描显微镜的观察结果表明,37℃热激可引起小麦胞内自由Ca。’浓度迅速提高。在Ca^2 存在条件下,热激也引起小麦CaM基因CaM1-2表达及CaM蛋白含量增加。Ca^2 可促进小麦热激基因hsp26和mp70表达和热激蛋白合成,而Ca^2 螯合剂EGTA、Ca^2 通道阻断剂异搏定和LaCl3、CaM抑制剂W7、TFP和CPZ明显降低热激基因hsp26和mp70表达和热激蛋白合成。EGTA、异搏定、TFP或CPZ也阻止小麦耐热性的获得。小麦CaM基因与热激基因的表达动力学研究表明CaM位于热激信号转导的上游,而Ca^2 是启动热激反应的胞内关键因子。凝胶阻滞分析的结果表明,Ca^2 -CaM在热激信号转导中的作用是通过激活热激转录因子的DNA结合活性来实现的。根据大量实验证据,作者提出在植物细胞内存在一条新的热激信号转导途径——钙一钙调素途径。 相似文献
3.
Ca2+-dependent and cAMP-dependent control of nicotinic acetylcholine receptor phosphorylation in muscle cells 总被引:1,自引:0,他引:1
Mouse BC3H1 myocytes were incubated with 32Pi before acetylcholine receptors were solubilized, immunoprecipitated, and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. More than 90% of the 32P found in the receptor was bound to the delta subunit. Two phosphorylation sites in this subunit were resolved by reverse phase high performance liquid chromatography after exhaustive proteolysis of the protein with trypsin. Sites 1 and 2 were phosphorylated to approximately the same level in control cells. The divalent cation ionophore, A23187, increased 32P in site 1 by 40%, but did not affect the 32P content of site 2. In contrast, isoproterenol increased 32P in site 2 by more than 60%, while increasing 32P in site 1 by only 20%. When dephosphorylated receptor was incubated with [gamma-32P]ATP and the catalytic subunit of cAMP-dependent protein kinase, the delta subunit was phosphorylated to a maximal level of 1.6 phosphates/subunit. Approximately half of the phosphate went into site 2, with the remainder going into a site not phosphorylated in cells. The alpha subunit was phosphorylated more slowly, but phosphorylation of both alpha and delta subunits was blocked by the heat-stable protein inhibitor of cAMP-dependent protein kinase. Phosphorylation of the receptor was also observed with preparations of phosphorylase kinase. In this case phosphorylation occurred in the beta subunit and site 1 of the delta subunit, neither of which were phosphorylated by cAMP-dependent protein kinase. The rate of receptor phosphorylation by phosphorylase kinase was slow relative to that catalyzed by cAMP-dependent protein kinase. Therefore, it can not yet be concluded that phosphorylase kinase phosphorylates the beta subunit and the delta subunit site 1 in cells. However, the results strongly support the hypothesis that phosphorylation by cAMP-dependent protein kinase accounts for phosphorylation of the alpha subunit and the delta subunit site 2 in response to elevations in cAMP. 相似文献
4.
5.
植物体内Ca2+信号转导过程的研究进展 总被引:4,自引:0,他引:4
Ca2+是高等植物细胞内普遍存在的一种信使分子,在植物体内起着非常广泛的作用,参与了植物体内多种刺激-反应的藕联过程。本文介绍了植物体内Ca2+转移系统,Ca2+信号的产生、终止和传递途径,Ca2+信号编码的多样性的最近研究进展。 相似文献
6.
The vanilloid receptor TRPV1 is a polymodal nonselective cation channel of nociceptive sensory neurons involved in the perception of inflammatory pain. TRPV1 exhibits desensitization in a Ca2+-dependent manner upon repeated activation by capsaicin or protons. The cAMP-dependent protein kinase (PKA) decreases desensitization of TRPV1 by directly phosphorylating the channel presumably at sites Ser116 and Thr370. In the present study we investigated the influence of protein phosphatase 2B (calcineurin) on Ca2+-dependent desensitization of capsaicin- and proton-activated currents. By using site-directed mutagenesis, we generated point mutations at PKA and protein kinase C consensus sites and studied wild type (WT) and mutant channels transiently expressed in HEK293t or HeLa cells under whole cell voltage clamp. We found that intracellular application of the cyclosporin A.cyclophilin A complex (CsA.CyP), a specific inhibitor of calcineurin, significantly decreased desensitization of capsaicin- or proton-activated TRPV1-WT currents. This effect was similar to that obtained by extracellular application of forskolin (FSK), an indirect activator of PKA. Simultaneous applications of CsA.CyP and FSK in varying concentrations suggested that these substances acted independently from each other. In mutation T370A, application of CsA.CyP did not reduce desensitization of capsaicin-activated currents as compared with WT and to mutant channels S116A and T144A. In a double mutation at candidate protein kinase C phosphorylation sites, application of CsA.CyP or FSK decreased desensitization of capsaicin-activated currents similar to WT channels. We conclude that Ca2+-dependent desensitization of TRPV1 might be in part regulated through channel dephosphorylation by calcineurin and channel phosphorylation by PKA possibly involving Thr370 as a key amino acid residue. 相似文献
7.
We previously reported (J. Biol. Chem. (1986) 261, 6352-6465) that the photoaffinity ligand for the Ah receptor, [125I]-2-azido-3-iodo-7,8-dibromodibenzo-p-dioxin, upon incubation with the liver cytosol fraction from C57BL/6 mice, labeled in a 1:1 ratio two peptides that had apparent molecular masses of 95 and 70 kDa and similar proteolytic fragmentation patterns. In the cytosolic fraction of Hepa 1 cells, a cloned murine hepatoma cell line, the product of photoaffinity labeling is almost exclusively a 95-kDa peptide which is rapidly hydrolyzed by a Ca2+-dependent proteinase to a 70-kDa peptide as well as other fragments. Thus, the ligand binding unit of the Ah receptor in C57BL/6 mouse liver and Hepa 1 cell is a 95-kDa peptide, and the 70-kDa fragment is a proteolytic artifact. The Ca2+-dependent proteinase which hydrolyzes the 95-kDa peptide has the properties of calpain II: (i) an absolute requirement for Ca2+, with maximal activity at 0.5 to 1.0 mM Ca2+; (ii) a pH optimum of 7.5 to 8.0; (iii) inhibition by EDTA, iodoacetamide, leupeptin and L-trans-epoxysuccinylleucylamido(4-guanidino)butane, but not by soybean trypsin inhibitor, aprotinin, or phenylmethanesufonyl fluoride. Upon chromatographic separation of the liver cytosol of C57BL/6 mice on DEAE-Sephacel, Ca2+-dependent proteinase activity (using casein or the labeled 95-kDa peptide as substrates) elutes with 0.25 M NaCl, and a specific proteinase inhibitor elutes with 0.15 M NaCl. Ca2+-dependent proteinase activity that hydrolyzes the 95-kDa peptide is found in the liver cytosols of several mammalian species. 相似文献
8.
Lei Li Haowen Liu Mia Krout Janet E. Richmond Yu Wang Jihong Bai Saroja Weeratunga Brett M. Collins Donovan Ventimiglia Yi Yu Jingyao Xia Jing Tang Jie Liu Zhitao Hu 《The Journal of cell biology》2021,220(4)
Ca2+-dependent neurotransmitter release requires synaptotagmins as Ca2+ sensors to trigger synaptic vesicle (SV) exocytosis via binding of their tandem C2 domains—C2A and C2B—to Ca2+. We have previously demonstrated that SNT-1, a mouse synaptotagmin-1 (Syt1) homologue, functions as the fast Ca2+ sensor in Caenorhabditis elegans. Here, we report a new Ca2+ sensor, SNT-3, which triggers delayed Ca2+-dependent neurotransmitter release. snt-1;snt-3 double mutants abolish evoked synaptic transmission, demonstrating that C. elegans NMJs use a dual Ca2+ sensor system. SNT-3 possesses canonical aspartate residues in both C2 domains, but lacks an N-terminal transmembrane (TM) domain. Biochemical evidence demonstrates that SNT-3 binds both Ca2+ and the plasma membrane. Functional analysis shows that SNT-3 is activated when SNT-1 function is impaired, triggering SV release that is loosely coupled to Ca2+ entry. Compared with SNT-1, which is tethered to SVs, SNT-3 is not associated with SV. Eliminating the SV tethering of SNT-1 by removing the TM domain or the whole N terminus rescues fast release kinetics, demonstrating that cytoplasmic SNT-1 is still functional and triggers fast neurotransmitter release, but also exhibits decreased evoked amplitude and release probability. These results suggest that the fast and slow properties of SV release are determined by the intrinsically different C2 domains in SNT-1 and SNT-3, rather than their N-termini–mediated membrane tethering. Our findings therefore reveal a novel dual Ca2+ sensor system in C. elegans and provide significant insights into Ca2+-regulated exocytosis. 相似文献
9.
Subtype specificity of the ryanodine receptor for Ca2+ signal amplification in excitation-contraction coupling. 总被引:2,自引:0,他引:2 下载免费PDF全文
In excitable cells membrane depolarization is translated into intracellular Ca2+ signals. The ryanodine receptor (RyR) amplifies the Ca2+ signal by releasing Ca2+ from the intracellular Ca2+ store upon receipt of a message from the dihydropyridine receptor (DHPR) on the plasma membrane in striated muscle. There are two distinct mechanisms for the amplification of Ca2+ signalling. In cardiac cells depolarization-dependent Ca2+ influx through DHPR triggers Ca2+-induced Ca2+ release via RyR, while in skeletal muscle cells a voltage-induced change in DHPR is thought to be mechanically transmitted, without a requirement for Ca2+ influx, to RyR to cause it to open. In expression experiments using mutant skeletal myocytes lacking an intrinsic subtype of RyR (RyR-1), we demonstrate that RyR-1, but not the cardiac subtype (RyR-2), is capable of supporting skeletal muscle-type coupling. Furthermore, when RyR-2 was expressed in skeletal myocytes, we observed depolarization-independent spontaneous Ca2+ waves and oscillations, which suggests that RyR-2 is prone to regenerative Ca2+ release responses. These results demonstrate functional diversity among RyR subtypes and indicate that the subtype of RyR is the key to Ca2+ signal amplification. 相似文献
10.
The role of mitochondrial Ca2+ transport and matrix Ca2+ in signal transduction in mammalian tissues
The pyruvate, NAD(+)-isocitrate and 2-oxoglutarate dehydrogenases are key regulatory enzymes in intramitochondrial oxidative metabolism in mammalian tissues, and can all be activated by increases in Ca2+ in the micromolar range. There is now mounting evidence that hormones and other stimuli which act by increasing cytosolic Ca2+ also, as a result, cause increases in mitochondrial matrix Ca2+ and hence activation of these enzymes, suggesting that the primary physiological function of mitochondrial Ca2(+)-transport is to be involved in this relay mechanism. This may also explain how in such circumstances rates of ATP production may be increased to meet the greater demand, but without any decreases in ATP/ADP occurring. 相似文献
11.
The possible presence and properties of the Ca2+-dependent K+ channel have been investigated in the Ehrlich ascites tumor cell. The treatment with ionophore A23187 + CA2+, propranolol or the electron donor system ascorbate-phenazine methosulphate, all of which activate that transport system in the human erythrocyte, produces in the Ehrlich cell a net loss of K+ (balanced by the uptake of Na+) and a stimulation of both the influx and the efflux of 86Rb. These effects were antagonized by quinine, a known inhibitor of the Ca2+-dependent K+ channel in other cell systems, and by the addition of EGTA to the incubation medium. Ouabain did not have an inhibitory effect. These results suggests that the Ehrlich cell possesses a Ca2+-dependent K+ channel whose characteristics are similar to those described in other cell systems. 相似文献
12.
13.
Ca2+-dependent binding of cytosolic components to insulin-secretory granules results in Ca2+-dependent protein phosphorylation 总被引:2,自引:3,他引:2 下载免费PDF全文
Interaction of Cu(II) and Gly-His-Lys, a growth-modulating tripeptide from plasma, was investigated by 13C- and 1H-n.m.r. and e.p.r. spectroscopy. The n.m.r. line-broadening was interpreted in terms of major and minor species formed as a function of pH. The results indicate that the n.m.r. line-broadening is due to the presence of minor species in rapid exchange and not due to the major species in solution, which has a large tau M. It is concluded that the technique of 13C- and 1H-n.m.r. line broadening, caused by paramagnetic Cu(II) ion, should be undertaken with caution, since the method may not be useful for obtaining structural information on the major species. The e.p.r. spectra over a wide pH range are almost entirely due to similarly co-ordinating species. Starting at pH 5.5, the narrowest absorption near 340 mT shows superhyperfine structure, which comes out sharply in the pH region 6.0-9.6. The spectra in this pH range showed the seven lines of nitrogen superhyperfine splitting, indicating clearly the co-ordination of three nitrogen atoms to Cu(II). The e.p.r. parameters in the medium pH range, A parallel = 19.5 mT and g parallel = 2.21, fit well with the contention that Cu(II) is ligated to Gly-His-Lys through one oxygen atom and three nitrogen atoms in a square-planar configuration. 相似文献
14.
Ca2+-dependent cell surface protein phosphorylation may be involved in the initiation of DNA synthesis 总被引:1,自引:0,他引:1
Incubating T51B rat liver cells in Ca2+-deficient, serum-rich medium containing only 0.02 mM Ca2+ strikingly decreased the phosphorylation of several trypsin-removable cell surface proteins and arrested the cells in late G1 phase. Raising the Ca2+ concentration in the Ca2+-deficient medium from 0.02 mM to 0.5 mM or adding 80 nM TPA (12-O-tetradecanoyl-phorbol-13-acetate), a protein kinase C activator, stimulated the phosphorylation of a certain set of surface proteins within 5 min and the initiation of DNA replication within the next 2 hr. By contrast, incubation in the same Ca2+-deficient medium, which does not affect the proliferation of neoplastic T51B-261B cells, did not reduce the phosphorylation of cell surface proteins. These observations suggest that the stimulation of a Ca2+-dependent protein kinase (possibly protein kinase C) directly or indirectly phosphorylates certain cell surface proteins that might be part of the mechanism that triggers the Ca2+-dependent G1----S transition of normal cells. They also suggest that an alteration of this Ca2+-dependent protein kinase might be the reason for neoplastic cells being able to proliferate in the face of an external Ca2+ shortage that would stop the proliferation of normal cells. 相似文献
15.
电压门控钙通道受钙依赖性易化和失活两种相互对立的反馈机制调节.不同浓度的钙离子,通过作为钙感受器的钙调蛋白的介导,主要与钙通道α1亚基羧基端的多个不连续片段发生复杂的相互作用,分别引发钙依赖性易化和失活.钙/钙调蛋白依赖性蛋白激酶Ⅱ及其它钙结合蛋白等也参与此调节过程.新近研究表明,钙通道的钙依赖性调节机制失衡与心律失常等的发病机制密切相关. 相似文献
16.
The model system presented here is based on immobilised single cells, derived directly from tobacco mesophyll protoplasts. It allows the adequate steering of cell populations towards expansion, cell cycling or cell resting. Using this approach cells always have the same predictable response to auxins and cytokinins whatever their actual physiological status. This model system opens new ways to study cellular parameters governing these hormone responses, some of which have been explored so far; a) the cytokinin response can equally well be induced by endogenous as by exogenous cytokinins; b) at least two intracellular components, microtubuli and the ER, adapt their architecture to the hormone-induced status of the cell; c) addition of NAA to the cells does not induce a change in the cytoplasmic pH. 相似文献
17.
18.
Antonio del Castillo-Olivares Alicia Esteban del Valle Javier Márquez Ignacio NÚñez de Castro Miguel ángel Medina 《Journal of bioenergetics and biomembranes》1995,27(6):605-611
Ehrlich cell plasma membrane ferricyanide reductase activity increased in the presence of mastoparan, a generic activator of G proteins, using either whole cells or isolated plasma membrane fractions. Agents that increase intracellularcAMP also increased the rate of ferricyanide reduction by Ehrlich cells. For the first time, evidence is shown on a modulation of plasma membrane redox system bycGMP. In fact, permeant analogs ofcGMP, dibutyrylcGMP, and 8-bromo-cGMP increased the rate of ferricyanide reduction by the Ehrlich cell plasma membrane redox system. Furthermore, specific inhibition ofcGMP-phosphodiesterases by dipyridamole was also accompanied by an enhancement in the rate of ferricyanide reduction. On the other hand, treatments expected to increase cytoplasmic Ca2+ concentrations were accompanied by a remarkable stimulation of the reductase activity. Taking all these data together, it seems that the Ehrlich cell plasma membrane redox system is under a multiple and complex regulation by different signal transduction pathways involving G proteins, cyclic nucleotides, and Ca2+ ions. 相似文献
19.
I. V. Shemarova V. P. Nesterov 《Journal of Evolutionary Biochemistry and Physiology》2006,42(2):117-127
This review summarizes current concepts of the role of Ca2+ and neurotransmitters of the sympathetic nervous system in transduction of stress signals leading to apoptosis or cell hypertrophy of cardiomyocytes. A particular attention is paid to consideration of contribution of MAP-kinases (mitogen-activated protein kinases) to transduction of stress signals coming into cardiomyocytes through mechanism of interaction of adrenoreceptors with ligands. 相似文献
20.
Vespa A Darmon AJ Turner CE D'Souza SJ Dagnino L 《The Journal of biological chemistry》2003,278(13):11528-11535
Integrin complexes are necessary for proper proliferation and differentiation of epidermal keratinocytes. Differentiation of these cells is accompanied by down-regulation of integrins and focal adhesions as well as formation of intercellular adherens junctions through E-cadherin homodimerization. A central component of integrin adhesion complexes is integrin-linked kinase (ILK), which can induce loss of E-cadherin expression and epithelial-mesenchymal transformation when ectopically expressed in intestinal and mammary epithelia. In cultured primary mouse keratinocytes, we find that ILK protein levels are independent of integrin expression and signaling, since they remain constant during Ca(2+)-induced differentiation. In contrast, keratinocyte differentiation is accompanied by marked reduction in kinase activity in ILK immunoprecipitates and altered ILK subcellular distribution. Specifically, ILK distributes in close apposition to actin fibers along intercellular junctions in differentiated but not in undifferentiated keratinocytes. ILK localization to cell-cell borders occurs independently of integrin signaling and requires Ca(2+) as well as an intact actin cytoskeleton. Further, and in contrast to what is observed in other epithelial cells, ILK overexpression in differentiated keratinocytes does not promote E-cadherin down-regulation and epithelial-mesenchymal transition. Thus, novel tissue-specific mechanisms control the formation of ILK complexes associated with cell-cell junctions in differentiating murine epidermal keratinocytes. 相似文献