首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Mammalian telomeres are composed of long tandem arrays of double-stranded telomeric TTAGGG repeats associated with the telomeric DNA-binding proteins, TRF1 and TRF2. TRF1 and TRF2 contain a similar C-terminal Myb domain that mediates sequence-specific binding to telomeric DNA. In the budding yeast, telomeric DNA is associated with scRap1p, which has a central DNA-binding domain that contains two structurally related Myb domains connected by a long linker, an N-terminal BRCT domain, and a C-terminal RCT domain. Recently, the human ortholog of scRap1p (hRap1) was identified and shown to contain a BRCT domain and an RCT domain similar to scRap1p. However, hRap1 contained only one recognizable Myb motif in the center of the protein. Furthermore, while scRap1p binds telomeric DNA directly, hRap1 has no DNA-binding ability. Instead, hRap1 is tethered to telomeres by TRF2. Here, we have determined the solution structure of the Myb domain of hRap1 by NMR. It contains three helices maintained by a hydrophobic core. The architecture of the hRap1 Myb domain is very close to that of each of the Myb domains from TRF1, scRap1p and c-Myb. However, the electrostatic potential surface of the hRap1 Myb domain is distinguished from that of the other Myb domains. Each of the minimal DNA-binding domains, containing one Myb domain in TRF1 and two Myb domains in scRap1p and c-Myb, exhibits a positively charged broad surface that contacts closely the negatively charged backbone of DNA. By contrast, the hRap1 Myb domain shows no distinct positive surface, explaining its lack of DNA-binding activity. The hRap1 Myb domain may be a member of a second class of Myb motifs that lacks DNA-binding activity but may interact instead with other proteins. Other possible members of this class are the c-Myb R1 Myb domain and the Myb domains of ADA2 and Adf1. Thus, while the folds of all Myb domains resemble each other closely, the function of each Myb domain depends on the amino acid residues that are located on the surface of each protein.  相似文献   

5.
A gene (AtTRP1) encoding a telomeric repeat-binding protein has been isolated from Arabidopsis thaliana. AtTRP1 is a single copy gene located on chromosome 5 of A. thaliana. The protein AtTRP1 encoded by this gene is not only homologous to the Myb DNA-binding motifs of other telomere-binding proteins but also is similar to several initiator-binding proteins in plants. Gel retardation assay revealed that the 115 residues on the C terminus of this protein, including the Myb motif, are sufficient for binding to the double-stranded plant telomeric sequence. The isolated DNA-binding domain of AtTRP1 recognizes each telomeric repeat centered on the sequence GGTTTAG. The almost full-length protein of AtTRP1 does not form any complex at all with the DNA fragments carrying four or fewer GGTTTAG repeats. However, it forms a complex with the sequence (GGTTTAG)(8) more efficiently than with the sequence (GGTTTAG)(5). These data suggest that the minimum length of a telomeric DNA for AtTRP1 binding consists of five GGTTTAG repeats and that the optimal AtTRP1 binding may require eight or more GGTTTAG repeats. It also implies that this protein AtTRP1 may bind in vivo primarily to the ends of plant chromosomes, which consist of long stretches of telomeric repeats.  相似文献   

6.
TRF1 is a dimer and bends telomeric DNA.   总被引:25,自引:0,他引:25  
A Bianchi  S Smith  L Chong  P Elias    T de Lange 《The EMBO journal》1997,16(7):1785-1794
  相似文献   

7.
Myb-related proteins from plants to humans are characterized by a DNA-binding domain which contains two to three imperfect repeats of approximately 50 amino acids each. Based on the evolutionary conservation of specific residues, secondary structural predictions suggest an arrangement of alpha helices homologous to that seen in the homeodomains, members of the helix-turn-helix family of DNA-binding proteins. We have used molecular modelling in conjunction with site-directed mutagenesis to test the feasibility of this structure. We propose that each Myb repeat consists of three alpha helices packed over a hydrophobic core which is built around the three highly conserved tryptophan residues. The C-terminal helix forms part of the helix-turn-helix motif and can be positioned into the major groove of B-form DNA, allowing prediction of residues critical for specificity of interaction. Modelling also allowed positioning of adjacent repeats around the major groove over an 8 bp binding site.  相似文献   

8.
9.
10.
Telomeres of nuclear chromosomes are usually composed of an array of tandemly repeated sequences that are recognized by specific Myb domain containing DNA-binding proteins (telomere-binding proteins, TBPs). Whereas in many eukaryotes the length and sequence of the telomeric repeat is relatively conserved, telomeric sequences in various yeasts are highly variable. Schizosaccharomyces pombe provides an excellent model for investigation of co-evolution of telomeres and TBPs. First, telomeric repeats of S. pombe differ from the canonical mammalian type TTAGGG sequence. Second, S. pombe telomeres exhibit a high degree of intratelomeric heterogeneity. Third, S. pombe contains all types of known TBPs (Rap1p [a version unable to bind DNA], Tay1p/Teb1p, and Taz1p) that are employed by various yeast species to protect their telomeres. With the aim of reconstructing evolutionary paths leading to a separation of roles between Teb1p and Taz1p, we performed a comparative analysis of the DNA-binding properties of both proteins using combined qualitative and quantitative biochemical approaches. Visualization of DNA-protein complexes by electron microscopy revealed qualitative differences of binding of Teb1p and Taz1p to mammalian type and fission yeast telomeres. Fluorescence anisotropy analysis quantified the binding affinity of Teb1p and Taz1p to three different DNA substrates. Additionally, we carried out electrophoretic mobility shift assays using mammalian type telomeres and native substrates (telomeric repeats, histone-box sequences) as well as their mutated versions. We observed relative DNA sequence binding flexibility of Taz1p and higher binding stringency of Teb1p when both proteins were compared directly to each other. These properties may have driven replacement of Teb1p by Taz1p as the TBP in fission yeast.  相似文献   

11.
12.
Telomere-binding proteins have recently been recognised not only as necessary building blocks of telomere structure, but namely as components which are of central importance to telomere metabolism being involved in regulation of telomere length as well as in protective (capping) function of telomeres. Although the knowledge on plant telomeric DNA-binding proteins lags behind that in human and yeast, recent data show both analogies and plant-specific features in the composition and interactions of telomeric proteins. This review focuses primarily on proteins with known amino acid sequence. These can be classified into following groups: 1) the family of proteins with Myb domain at C-terminus, 2) proteins with Myb domain at N-terminus, both binding double-stranded DNA of telomeric repeats TTTAGGG, 3) the single-stranded DNA-binding proteins, and 4) other proteins that act also in non-telomeric chromatin regions. Proteins with C-terminal Myb domain reported as IBP family were previously found in human, whereas Smh family representing proteins with Myb domain at N-terminus was identified only in plants. Also RRM family of the single-stranded DNA-binding proteins is likely to be plant specific.  相似文献   

13.
Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminal Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB21–64) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB21–64 and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences.  相似文献   

14.
15.
16.
17.
Short regularly spaced repeats (SRSRs) occur in multiple large clusters in archaeal chromosomes and as smaller clusters in some archaeal conjugative plasmids and bacterial chromosomes. The sequence, size, and spacing of the repeats are generally constant within a cluster but vary between clusters. For the crenarchaeon Sulfolobus solfataricus P2, the repeats in the genome fall mainly into two closely related sequence families that are arranged in seven clusters containing a total of 441 repeats which constitute ca. 1% of the genome. The Sulfolobus conjugative plasmid pNOB8 contains a small cluster of six repeats that are identical in sequence to one of the repeat variants in the S. solfataricus chromosome. Repeats from the pNOB8 cluster were amplified and tested for protein binding with cell extracts from S. solfataricus. A 17.5-kDa SRSR-binding protein was purified from the cell extracts and sequenced. The protein is N terminally modified and corresponds to SSO454, an open reading frame of previously unassigned function. It binds specifically to DNA fragments carrying double and single repeat sequences, binding on one side of the repeat structure, and producing an opening of the opposite side of the DNA structure. It also recognizes both main families of repeat sequences in S. solfataricus. The recombinant protein, expressed in Escherichia coli, showed the same binding properties to the SRSR repeat as the native one. The SSO454 protein exhibits a tripartite internal repeat structure which yields a good sequence match with a helix-turn-helix DNA-binding motif. Although this putative motif is shared by other archaeal proteins, orthologs of SSO454 were only detected in species within the Sulfolobus genus and in the closely related Acidianus genus. We infer that the genus-specific protein induces an opening of the structure at the center of each DNA repeat and thereby produces a binding site for another protein, possibly a more conserved one, in a process that may be essential for higher-order stucturing of the SRSR clusters.  相似文献   

18.
Methylated DNA-binding protein (MDBP) from human placenta recognizes specific DNA sequences containing 5-methylcytosine (m5C) residues. Comparisons of binding of various prokaryotic DNAs to MDBP indicate that m5CpG is present in the recognition sites for this protein but is only part of the recognition sequence. Specific binding to MDBP was observed for bacteriophage XP12 DNA, which naturally contains approximately 1/3 of its residues as m5C, and for Micrococcus luteus DNA, M13mp8 replicative form (RF) DNA, and pBR322 when these three DNAs were methylated at CpG sites by human DNA methyltransferase. Five DNA regions binding to MDBP have been localized by DNase I footprinting or restriction mapping in methylated pBR322 and M13mp8 RF DNAs. A comparison of their sequences reveals a common 5'-m5CGRm5CG-3' element or closely related sequence in which one of the m5C residues may be replaced by a T. In addition to this motif, one upstream and one downstream m5CpG as well as other common residues over an approximately 20-bp long region may be recognized by MDBP.  相似文献   

19.
BACKGROUND: Mammalian telomeres consist of long tandem arrays of double-stranded TTAGGG sequence motif packaged by TRF1 and TRF2. In contrast to the DNA binding domain of c-Myb, which consists of three imperfect tandem repeats, DNA binding domains of both TRF1 and TRF2 contain only a single Myb repeat. In a DNA complex of c-Myb, both the second and third repeats are closely packed in the major groove of DNA and recognize a specific base sequence cooperatively. RESULTS: The structure of the DNA binding domain of human TRF1 bound to telomeric DNA has been determined by NMR. It consists of three helices, whose architecture is very close to that of three repeats of the c-Myb DNA binding domain. Only the single Myb domain of TRF1 is sufficient for the sequence-specific recognition. The third helix of TRF1 recognizes the TAGGG part in the major groove, and the N-terminal arm interacts with the TT part in the minor groove. CONCLUSIONS: The DNA binding domain of TRF1 can specifically and fully recognize the AGGGTT sequence. It is likely that, in the dimer of TRF1, two DNA binding domains can bind independently in tandem arrays to two binding sites of telomeric DNA that is composed of the repeated AGGGTT motif. Although TRF2 plays an important role in the t loop formation that protects the ends of telomeres, it is likely that the binding mode of TRF2 to double-stranded telomeric DNA is almost identical to that of TRF1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号