首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent reports have demonstrated fusion of the TEL gene on 12p13 to the JAK2 gene on 9p24 in human leukemias. Three variants have been identified that fuse the TEL pointed (PNT) domain to (i) the JAK2 JH1-kinase domain, (ii) part of and (iii) all of the JH2 pseudokinase domain. We report that all of the human TEL/JAK2 variants, and a human/mouse chimeric hTEL/mJAK2(JH1) fusion gene, transform the interleukin-3 (IL-3)-dependent murine hematopoietic cell line Ba/F3 to IL-3-independent growth. Transformation requires both the TEL PNT domain and JAK2 kinase activity. Furthermore, all TEL/JAK2 variants strongly activated STAT 5 by phosphotyrosine Western blots and by electrophoretic mobility shift assays (EMSA). Mice (n = 40) transplanted with bone marrow infected with the MSCV retrovirus containing either the hTEL/mJAK2(JH1) fusion or its human counterpart developed a fatal mixed myeloproliferative and T-cell lymphoproliferative disorder with a latency of 2-10 weeks. In contrast, mice transplanted with a TEL/JAK2 mutant lacking the TEL PNT domain (n = 10) or a kinase-inactive TEL/JAK2(JH1) mutant (n = 10) did not develop the disease. We conclude that all human TEL/JAK2 fusion variants are oncoproteins in vitro that strongly activate STAT 5, and cause lethal myelo- and lymphoproliferative syndromes in murine bone marrow transplant models of leukemia.  相似文献   

2.
3.
目的 建立蛋白激酶AKT2体外磷酸化检测体系.方法 构建携带AKT2 cDNA编码区的pLNCX2逆转录病毒重组载体,包装重组病毒,转导293A细胞,G418筛选得到稳定表达组成型活化的AKT2细胞株,应用免疫沉淀获得蛋白激AKT2;将核基质结合蛋白SATB1的1~204的氨基酸序列及其47位丝氨酸的突变体S47A、S47D,分别与GST基因融合表达载体pGEX4T-1进行重组,经测序鉴定后转化大肠埃希菌BL-21,IPTG诱导表达经亲和纯化得到GST-SATB1 1-204、GST-SATB1 1-204 S47A和GST-SATB1 1-204 S47D融合蛋白;利用免疫沉淀的AKT2磷酸化GST-SATB1融合蛋白,应用免疫印迹检测其是否被磷酸化.结果 细胞表达的蛋白激酶AKT2能高效的将野生型SATB1 1-204 磷酸化,而不能磷酸化其两种突变体.结论 成功建立了一个蛋白激酶体外磷酸化系统.  相似文献   

4.
5.
TEL/JAK2 tyrosine kinase inhibits DNA repair in the presence of amifostine   总被引:1,自引:0,他引:1  
The TEL/JAK2 chromosomal translocation (t(9;12)(p24;p13)) is associated with T cell childhood acute lymphoblastic leukemia. The TEL/JAK2 fusion protein contains the JAK2 catalytic domain and the TEL-specific oligomerization domain. TEL-mediated oligomerization of the TEL/JAK2 proteins results in the constitutive activation of the tyrosine kinase activity. Leukemia cells expressing TEL/JAK2 tyrosine kinase become resistant to anti-neoplastic drugs. Amifostine is a pro-drug which can selectively protect normal tissues against the toxicity of anticancer drugs and radiation. We investigated the effects of amifostine on idarubicin-induced DNA damage and repair in murine pro-B lymphoid BaF3 cells and BaF3-TEL/JAK2-transformed cells using alkaline single cell gel electrophoresis (comet assay). Idarubicin induced DNA damage in both cell types but amifostine reduced its extent in control non-transformed BaF3 cells and enhanced it in TEL/JAK2-transformed cells. The transformed cells did not show measurable DNA repair after exposure to amifostine and idarubicin, but cells treated only with idarubicin were able to recover within a 60-min incubation. Because TEL/JAK2-transformed cells can be considered as model cells for certain human leukemias and lymphomas we anticipate an enhancement of idarubicin cytotoxicity by amifostine in these diseases. Moreover, TEL/JAK2 tyrosine kinase might be involved in cellular response to DNA damage. Amifostine could promote apoptosis or lower the threshold for apoptosis induction dependent on TEL/JAK2 activation.  相似文献   

6.
The 12p13 ETV6 (TEL) gene is frequently targeted by chromosomal translocations in human malignancies, resulting in the formation of oncogenic ETV6 gene fusions. Many of the known partner genes encode protein tyrosine kinases (PTKs), generating fusion proteins that function as chimeric PTKs. ETV6-NTRK3 (EN), comprised of the ETV6 SAM domain fused to the NTRK3 PTK, is unique among ETV6 chimeric oncoproteins, as it is expressed in cancers of multiple lineages. We initially hypothesized that, similar to other ETV6-PTK chimeras, SAM-mediated dimerization of EN leads to constitutive activation of the PTK and downstream signaling cascades. However, when the EN SAM domain was replaced with an inducible FK506 binding protein (FKBP) dimerization system, resulting FKBP-NTRK3 chimeras failed to transform NIH 3T3 cells even though PTK activation was preserved. It was recently shown that the ETV6 SAM domain has two potential interacting surfaces, raising the possibility that this domain can mediate protein polymerization. We therefore mutated each EN SAM binding interface in a manner shown previously to abolish self-association of wild-type ETV6. Each mutation completely blocked the ability of EN to polymerize, to activate its PTK, and to transform NIH 3T3 cells. Furthermore, EN itself formed large polymeric structures within cells while mutant EN proteins were present only as monomers. Finally, we observed a dominant negative effect on the transformation of isolated SAM domains coexpressed in EN-transformed cells. Taken together, our results suggest that higher-order polymerization may be a critical requirement for the transformation activity of EN and possibly other ETV6-PTK fusion proteins.  相似文献   

7.
The Rab family of small GTPases are key regulators of membrane trafficking. Partially purified Rab8 from Bombyx mori (BRab8) was phosphorylated by protein kinase C in mammalian cells in vitro. To determine which of the seven serines and four threonines are phosphorylated, we generated deletion and site-directed mutants of BRab8, inserted them in Escherichia coli, partially purified the encoded fusion proteins by affinity chromatography, and examined their phosphorylation by protein kinase C in vitro. We found that Ser-132 of BRab8 was specifically phosphorylated by protein kinase C. In addition, Western blotting using an antiserum against BRab8 and in-gel staining for phosphorylated proteins revealed that BRab8 is phosphorylated in vivo.  相似文献   

8.
We isolated three Arabidopsis thaliana cDNA clones (ATMKK3, ATMKK4 and ATMKK5) encoding protein kinases with extensive homology to the mitogen-activated protein kinase kinases (MAPKKs) of various organisms in the catalytic domain. ATMKK3 shows high homology (85% identity) to NPK2, a tobacco MAPKK homologue. ATMKK4 and 5 are closely related to each other (84% identity). Phylogenetic analysis showed that the plant MAPKKs constitute at least three subgroups. The recombinant ATMKK3 and ATMKK4 were expressed as a fusion protein with glutathione S-transferase (GST) in Escherichia coli. Affinity purified GST-ATMKK3 and GST-ATMKK4 proteins contained phosphorylation activity, which shows that both the ATMKK3 and ATMKK4 genes encode functional protein kinases. Northern blot analysis revealed that the ATMKK3 gene expressed in all the organs. The levels of ATMKK4 and 5 mRNAs were relatively higher in steins and leaves than in flowers and roots. We determined the map positions of the ATMKK3, 4 and 5 genes on Arabidopsis chromosomes by RFLP mapping using P1 genomic clones.  相似文献   

9.
Y Li  C Drone  E Sat    H P Ghosh 《Journal of virology》1993,67(7):4070-4077
The spike glycoprotein G of vesicular stomatitis virus (VSV) induces membrane fusion at low pH. We used linker insertion mutagenesis to characterize the domain(s) of G glycoprotein involved in low-pH-induced membrane fusion. Two or three amino acids were inserted in frame into various positions in the extracellular domain of G, and 14 mutants were isolated. All of the mutants expressed fully glycosylated proteins in COS cells. However, only seven mutant G glycoproteins were transported to the cell surface. Two of these mutants, D1 and A6, showed wild-type fusogenic properties. The mutant A2 had a temperature-sensitive defect in the transport of the mutant G glycoprotein to the cell surface. The other four mutants, H2, H5, H10, and A4, although present in cell surface, failed to induce cell fusion when cells expressing these mutant glycoproteins were exposed to acidic pH. These four mutant G proteins could form trimers, indicating that the defect in fusion was not due to defective oligomerization. One of these mutations, H2, is within a region of conserved, uncharged amino acids that has been proposed as a possible fusogenic sequence. The mutation in H5 was about 70 amino acids downstream of the mutation in H2, while mutations in H10 and A4 were about 300 amino acids downstream of the mutation in H2. Conserved sequences were also noted in the H10 and A4 segment. The results suggest that in the case of VSV G glycoprotein, the fusogenic activity may involve several spatially separated regions in the extracellular domain of the protein.  相似文献   

10.
11.
12.
The inhibition of elicitor-induced plant defense responses by the protein kinase inhibitors K252a and staurosporine indicates that defense responses require protein phosphorylation. We isolated a cDNA clone encoding Nicotiana tabacum lectin-like receptor protein kinase 1 (NtlecRK1), an elicitor-responsive gene; in tobacco bright yellow (BY-2) cells by a differential display method. NtlecRK forms a gene family with at least three members in tobacco. All three NtlecRK genes potentially encode the N-terminal legume lectin domain, transmembrane domain and C-terminal Ser/Thr-type protein kinase domain. Green fluorescent protein (GFP) fusion showed that the NtlecRK1 protein was located on the plasma membrane. In addition, NtlecRK1 and 3 were responsive to INF1 elicitin and the bacterial elicitor harpin. These results indicate that NtlecRKs are membrane-located protein kinases that are induced during defense responses in BY-2 cells.  相似文献   

13.
14.
15.
A cDNA (cNPK2) that encodes a protein of 518 amino acids was isolated from a library prepared from poly(A)+ RNAs of tobacco cells in suspension culture. The N-terminal half of the predicted NPK2 protein is similar in amino acid sequence to the catalytic domains of kinases that activate mitogen-activated protein kinases (designated here MAPKKs) from various animals and to those of yeast homologs of MAPKKs. The N-terminal domain of NPK2 was produced as a fusion protein in Escherichia coli, and the purified fusion protein was found to be capable of autophosphorylation of threonine and serine residues. These results indicate that the N-terminal domain of NPK2 has activity of a serine/threonine protein kinase. Southern blot analysis showed that genomic DNAs from various plant species, including Arabidopsis thaliana and sweet potato, hybridized strongly with cNPK2, indicating that these plants also have genes that are closely related to the gene for NPK2. The structural similarity between the catalytic domain of NPK2 and those of MAPKKs and their homologs suggests that tobacco NPK2 corresponds to MAPKKs of other organisms. Given the existence of plant homologs of an MAP kinase and tobacco NPK1, which is structurally and functionally homologous to one of the activator kinases of yeast homologs of MAPKK (MAPKKKs), it seems likely that a signal transduction pathway mediated by a protein kinase cascade that is analogous to the MAP kinase cascades proposed in yeasts and animals, is also conserved in plants.  相似文献   

16.
17.
18.
19.
A family of calcium-responsive protein kinases is abundant in plant cell extracts but has not been identified in animals and fungi. These enzymes have a unique structure consisting of a protein kinase catalytic domain fused to carboxy-terminal autoregulatory and calmodulin-like domains. In this report, we present the amino acid sequences for eight new Arabidopsis cDNA clones encoding isoforms of this enzyme. Three isoforms were expressed as fusion proteins in Escherichia coli and exhibited calcium-stimulated protein kinase activity. We propose CPK as the gene designation for this family of enzymes and describe a phylogenetic analysis for all known isoforms.  相似文献   

20.
Translin-associated factor X (TRAX) is the predominantly cytoplasmic binding partner of TB-RBP/translin in mouse testis. Four mouse testis cDNAs encoding specific TRAX-interacting proteins were isolated from a yeast two-hybrid library screen. One novel cDNA designated Tsnaxip1 (TRAX-interacting protein-1) encodes 709 amino acids. We isolated a cDNA encoding the 427 carboxy-terminal amino acids of MEA-2, a Golgi-associated, maleenhanced autoantigen; a cDNA encoding 429 amino acids with 73% homology to centrosomal Akap9; and a cDNA encoding 346 amino acids with 75% homology to SUN1, a predicted human protein that contains a SUN domain (which is present in some perinuclear proteins). Interactions were verified using in vitro synthesized fusion proteins. All four genes were expressed in the testis and enriched in germ cells. Confocal microscopy studies using green fluorescent protein fusion proteins determined that these TRAX-interacting proteins colocalize with TRAX. The data suggest that TRAX may have a function associated with perinuclear organelles during spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号