首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary An isoenzyme survey was conducted for several geographically dispersed accessions of four diploid Lotus species, L. alpinus Schleich., L. japonicus (Regel) Larsen, L. tenuis Waldst. et Kit and L. uliginosus Schkuhr, and for the tetraploid L. corniculatus L., in order to ascertain whether isoenzyme data could offer additional evidence concerning the origin of L. corniculatus. Seven enzyme systems were examined using horizontal starch gel electrophoresis. These were PGI, TPI, MDH, IDH, PGM, 6-PGDH, and ME. Lotus uliginosus had monomorphic unique alleles, that were not found within L. corniculatus, at 7 loci. These loci and alleles are: Tpi1-112, Pgm1,2-110, Pgm3-82, Mdh3-68, 6-Pgdh1-110, 6-Pgdh2-98,95, and Me2-100. Other diploid taxa contained alleles found in L. corniculatus for these and other loci. The implications of the isoenzyme data to theories on the origin of L. corniculatus are discussed.Communicated by H. F. Linskens  相似文献   

2.
The genus Lotus comprises a heterogeneous group of annual and perennial species. Lotus japonicus (with MG20 and Gifu ecotypes) has been adopted as one of the model legumes in genetic and genomic studies. Other Lotus species, such us Lotus burttii and Lotus filicaulis, have also been used in genetic and genomic studies because of their capacity to produce fertile progenies in crosses with L. japonicus. In the present work, physiological responses to salt stress in four Lotus genotypes were evaluated on the basis of growth and associated parameters, such as photosynthesis, ions, relative water content, oxidative damage and antioxidant system responses, using two NaCl levels applied by acclimation for up to 28 and 60 d. Growth responses varied with plant developmental stage in the four Lotus genotypes. L. japonicus MG20 was found to be a salt-tolerant genotype, mainly when exposed to salt stress at the young plant stage. The capacity of Lj MG20 to sustain growth under salt stress was correlated with enhancement of Superoxide dismutase and Glutathione reductase activities, as well as with increases in total and reduced glutathione content and lower Na+ accumulation in leaves. These results suggest that enhancement of antioxidant responses in Lj MG20 contributed to improve salt stress tolerance at early stages. On the other hand, after long-term high NaCl stress treatment, L. filicaulis exhibited lower biomass reduction, lower oxidative damage and Na+ accumulation in leaves than the control treatment; hence, this genotype was considered salt-tolerant. These apparently ambiguous results remark that salt tolerance, as a development-related process, was differentially expressed among the Lotus genotypes and depended on stress duration and plant phenological stage.  相似文献   

3.
Summary Somatic hybrid plants were produced by fusion of birdsfoot trefoil (Lotus corniculatus) cv Leo and L. conimbricensis Willd. protoplasts. Birdsfoot trefoil etiolated hypocotyl protoplasts were inactivated with iodoacetate to inhibit cell division prior to fusion with L. conimbricensis suspension culture protoplasts. L. conimbricensis protoplasts divided to form callus which did not regenerate plants. Thus, plant regeneration from protoplast-derived callus was used to tentatively identify somatic hybrid cell lines. Plants regenerated from three cell lines exhibited additive combinations of parental isozymes of phosphoglucomutase, and L. conimbricensis-specific esterases indicating that they were somatic hybrids. The somatic chromosome number of one somatic hybrid was 36. The other somatic hybrid exhibited variable chromosome numbers ranging from 33 to 40. These observations approximate the expected combination of the birdsfoot trefoil (2n=4x=24) and L. conimbricensis (2n=2x=12) genomes. Somatic hybrid flowers were less yellow than birdsfoot trefoil flowers and had purple keel tips, a trait inherited from the white flowered L. conimbricensis. Somatic hybrids also had inflorescence structure that was intermediate to the parents. Fifteen somatic hybrid plants regenerated from the three callus lines were male sterile. Successul fertilization in backcrosses with birdsfoot trefoil pollen has not yet been obtained suggesting that the hybrids are also female sterile. This is the first example of somatic hybridization between these two sexually incompatible Lotus species.Formerly USDA-ARS, St. Paul, Minn, USA  相似文献   

4.
Summary Segregation of the cytosolic Pgi2 locus was studied among progeny of the synthetic allotetraploid (L. japonicus × L. alpinus)2, the synthetic autotetraploid (L. alpinus)2, and the cultivated tetraploid species L. corniculatus L. Evidence of an original diploid duplication found within the interspecific hybrid L. japonicus × L. alpinus was also found within the synthetic allotetraploid (quadruplication of loci). Evidence suggesting quadruplication of loci was also found in the tetraploid L. corniculatus, but not in the synthetic autotetraploid (L. alpinus)2. It is suggested that the original duplication resulted from unequal crossing-over between homoeologues and that it provides evidence that L. corniculatus is a segmental allotetraploid. Quadruplication of loci in L. corniculatus could explain previously reported distorted tetrasomic ratios for segregation of qualitative characters in this species.  相似文献   

5.
The ability of random amplified polymorphic DNA (RAPD) to distinguish among different taxa of Lotus was evaluated for several geographically dispersed accessions of four diploid Lotus species, L. tennis Waldst. et Kit, L. alpinus Schleich., L. japonicus (Regel) Larsen, and L. uliginosus Schkuhr and for the tetraploid L. corniculatus L., in order to ascertain whether RAPD data could offer additional evidence concerning the origin of the tetraploid L. corniculatus. Clear bands and several polymorphisms were obtained for 20 primers used for each species/accession. The evolutionary pathways among the species/accessions presented in a cladogram were expressed in terms of treelengths giving the most parsimonious reconstructions. Accessions within the same species grouped closely together. It is considered that L. uliginosus which is most distantly related to L. corniculatus, may be excluded as a direct progenitor of L. corniculatus, confirming previous results from isoenzyme studies. Lotus alpinus is grouped with accessions of L. corniculatus, which differs from previous studies. With this exception, these findings are in agreement with previous experimental studies in the L. corniculatus group. The value of the RAPD data to theories on the origin of L. corniculatus is discussed.  相似文献   

6.
Summary Thirteen enzymes (MDH, SDH, LAP, PGM, PX, IDH, GPI, 6PGD, APH, GOT, GDH, ME and SOD) of 3 cultivated beet (B. vulgaris L.) gene pools, comprising 12 accessions of fodder beet, 11 of old multigerm sugar beet and 10 of modern monogerm sugar beet, were investigated using horizontal starch gel electrophoresis. Eleven accessions of primitive or wild B. vulgaris were also included for the comparison of isozymes. Variation in isozyme phenotypes was investigated to detect diversity in the three cultivated forms of beet. Phenotypic variation was observed in all except ME and SOD, which were monomorphic. A high degree of phenotypic polymorphism (Pj) was found in GDH, PGM, IDH, APH and MDH. Differences in phenotypic polymorphism in MDH, GPI and PX were recognized between fodder beet and both sugar beet groups. Average polymorphism for 13 enzymes in both sugar beets was significantly higher than that in fodder beet. For 13 enzymes, the existence of high isozyme diversity in both sugar beet gene pools was revealed. Allele frequencies in 13 alleles of five enzyme-coding loci, Lap, Px-1, Aph-1, Got-2 and Gdh-2, were investigated. New alleles, Px-1 1 and Got-2 1, were found in fodder beet accessions. No significant differences of average allele frequencies of five loci between fodder beet and both sugar beets were recognized. Several unique alleles and different isozyme phenotypes were observed in the accessions of B. vulgaris ssp. macrocarpa and ssp. adanensis. Future utilization of cultivated beet gene pools for sugar beet breeding is discussed from the viewpoint of genetic resources.  相似文献   

7.
Summary Earlier students of the origin of Lotus corniculatus suggested that this tetraploid species arose as an autotetraploid of the closely related diploid species L. tenuis or L. alpinus. More recent studies suggested that L. alpinus and L. japonicus could be ancestral forms. The present study of tannin content, phenolic content, cyanide production, morphology, cytogenetics, Rhizobium specificity and self-incompatibility in the corniculatus group virtually excludes the possibility that L. corniculatus could have arisen through autopolyploidy of L. tenuis or L. alpinus, and suggests that L. corniculatus arose through hybridization of L. alpinus and/or L. tenuis (probably as female parent) with L. uliginosus (probably as male parent), followed by chromosome doubling in the hybrid.  相似文献   

8.
Polymorphisms for six enzyme systems (GPI, IDH, PDG, PGM, SKD, and TPI) were analysed in the top onion,Allium ×proliferum. Five multilocus isozyme genotypes were found. The banding patterns of top onions were compared with those ofA. ×wakegi, A. cepa, A. fistulosum, A. altaicum, and artificial hybrids between these three species. One top onion type and one artificial hybrid had identical banding patterns. Shallots andA. altaicum, the wild progenitor ofA. fistulosum, cannot be distinguished from the common onion andA. fistulosum, respectively; these species are also potential contributors to the top onion's gene pool.  相似文献   

9.
We examined genetic diversity of howler monkeys (Alouatta palliata) from Costa Rica. Blood samples of howler monkeys were collected at various locations in Costa Rica, and electrophoresis of total plasma proteins yielded no variation. We also conducted starch gel electrophoresis of red cell isozymes and did not find variation for any of the 14 loci analyzed (i.e., ACP, ADA, CA2, EST, GPI, IDH, LDH‐1, LDH‐2, MDH, PGD, PGM‐1, PGM‐2, SOD, and TPI). These findings were compared with the levels of genetic variation for A. seniculus and A. belzebul from one Brazilian population. Four of the 14 isozymes (ADA, GPI, PGD, and SOD) showed more than one allele for these species. Both A. seniculus and A. belzebul from Brazil showed similar levels of genetic variation. The potential causes of the low genetic variation in A. palliata from Costa Rica are discussed.  相似文献   

10.
A virus collection was used to identify a pathogen suitable for laboratory use with the model legume Lotus japonicus. Several Lotus species or L. japonicus accessions were tested and various degrees of susceptibility to the Arabis mosaic virus derived from barley (ArMV-ba) were found. Virus multiplication and persistence in Lotus tissue were examined, as well as plant responses to it. Sensitivity to the virus among the accessions and species is discussed in light of their geographical origin. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Electrophoretic spectra of alcohol dehydrogenase (ADH), glutamate dehydrogenase (GDH), malate dehydrogenase (MDH), isocitrate dehydrogenase (IDH), and malic enzyme (ME) in different amaranth populations has been studied using a starch gel electrophoresis. 93 populations and 4 cultivars of amaranth have been analyzed. Some populations have been proved to be polymorphic that provided a possibility of a genetic control of the above-mentioned enzymes. The isozyme variability of the studied amaranth populations is low; all studied loci are found to be monomorphic for 73 populations and 4 cultivars. Some populations demonstrate a polymorphism in separate loci (Adh, Mdh 2, Gdh, Idh 1, Idh 2, and Mod 2). The obtained results evidence the presence of a genetic monomorphism in amaranth concerning the loci studied.  相似文献   

12.
Thirty-six sour (Prunus cerasus L.), sweet (P. avium L.), and ground cherry (P. fruticosa Pall.) selections were evaluated for seven enzyme systems and principal coordinate analysis was used to examine isozyme divergence among these cherry species. The enzyme systems studied were phosphoglucose isomerase (PGI), isocitrate dehydrogenase (IDH), phosphoglucomutase (PGM), 6-phosphogluconate dehydrogenase (6-PGD), leucine aminopeptidase (LAP), shikimate dehydrogenase (SKDH), and malate dehydrogenase (MDH). The first principal coordinate, which accounted for 41% of the total variation, separated the diploid sweet cherry selections from the sour, ground, and sour x ground cherry tetraploids. An additional 86 selections were evaluated for up to six of the enzyme systems to determine the polymorphisms at the enzyme loci and the level of heterozygosity between the diploid sweet cherry and the tetraploid species and interspecific hybrids. 6-PGD was the most polymorphic enzyme exhibiting 16 patterns. The tetraploid cherry species were more heterozygous than the diploid sweet cherry with an average heterozygosity of 78% compared to 19% for the diploids.  相似文献   

13.
14.
Eleven strains were isolated from root nodules of Lotus endemic to the Canary Islands and they belonged to the genus Ensifer, a genus never previously described as a symbiont of Lotus. According to their 16S rRNA and atpD gene sequences, two isolates represented minority genotypes that could belong to previously undescribed Ensifer species, but most of the isolates were classified within the species Ensifer meliloti. These isolates nodulated Lotus lancerottensis, Lotus corniculatus and Lotus japonicus, whereas Lotus tenuis and Lotus uliginosus were more restrictive hosts. However, effective nitrogen fixation only occurred with the endemic L. lancerottensis. The E. meliloti strains did not nodulate Medicago sativa, Medicago laciniata Glycine max or Glycine soja, but induced non-fixing nodules on Phaseolus vulgaris roots. nodC and nifH symbiotic gene phylogenies showed that the E. meliloti symbionts of Lotus markedly diverged from strains of Mesorhizobium loti, the usual symbionts of Lotus, as well as from the three biovars (bv. meliloti, bv. medicaginis, and bv. mediterranense) so far described within E. meliloti. Indeed, the nodC and nifH genes from the E. meliloti isolates from Lotus represented unique symbiotic genotypes. According to their symbiotic gene sequences and host range, the Lotus symbionts would represent a new biovar of E. meliloti for which bv. lancerottense is proposed.  相似文献   

15.
Sporophytes and gametophytes of Equisetum arvense, E. laevigatum, and E. telmateia were analyzed using enzyme electrophoresis to estimate isozyme number. Despite their uniformly high chromosome numbers (2n = 216), these three species exhibited isozyme numbers typical of diploid seed plants for the enzymes AAT, ADH, ALD, GDH, [NADP]IDH, LAP, MDH, [NADP]ME, PGI, PGM, SkDH, and 6PGDH. All three species exhibited an additional isozyme for TPI. There is, therefore, no genetic evidence for low base numbers such as x = 9 and x = 12 suggested for Equisetum. Intact chloroplasts were isolated from E. arvense and the chloroplast extract compared electrophoretically to whole plant extracts. The single enzymes observed for LAP, GDH, [NADP]IDH, and [NADP]ME were absent from the chloroplast extract. Isozymes AAT-1, ALD-2, MDH-3, PGI-1, PGM-2, SkDH-2, 6PGDH-2, TPI-2, and TPI-3 were active in the chloroplast fraction; 6PGDH-1, PGI-2, PGM-1, and TPI-1 were lacking from the chloroplast fraction and were considered cytosolic. Isozymes AAT-2, MDH-1, MDH-2, MDH-4, and SkDH-1 were also lacking from the chloroplast fraction but because AAT, MDH, and SkDH have been reported from several subcellular compartments, their localization is unknown. These findings indicate that isozymes in Equisetum species are subcellularly compartmentalized as has also been demonstrated for homosporous ferns, gymnosperms, and angiosperms.  相似文献   

16.
We studied electrophoretic variation and inheritance of triosephosphate isomerase (TPI) isozymes in maize (Zea mays L.). In contrast to most diploid plants, in maize, TPI exists as multiple isozymes in both the plastid and cytosolic subcellular compartments. Phenotypes result from the overlay of two independent sets of isozymes and allozymes, representing the plastid (encoded by the nuclear genes Tpi1 and Tpi2) and cytosolic (encoded by Tpi3, Tpi4, and Tpi5) systems. All possible intragenic and intergenic dimeric enzymes are formed between polypeptides within each subcellular compartment. No heterodimers are formed between plastid and cytosolic polypeptides. Extensive surveys of accessions of land races and inbred lines revealed 22 allelic variants for the five loci. Most alleles have been formally validated by segregation analysis. We describe two null alleles at Tpi4, distinguished by their relative abilities to form intergenic heterodimers with polypeptides specified by Tpi3 and Tpi5. Linkage analyses and crosses with B-A translocation stocks were effective in determining the chromosome locations of all five loci. Duplicated genes for both the plastid and cytosolic isozymes were localized to genomic regions that possess numerous other redundant sequences. We placed Tpi1 on the long arm of chromosome 7, approximately 23 centimorgans (cM) distal to g11; we localized its duplicate--Tpi2--17 cM distal to v4 on the long arm of chromosome 2. The triplicate loci encoding cytosolic TPIs reside on chromosomes 3 and 8. Tpi4 is approximately equidistant (11 cM) from d1 and Lg3, near the centromere of chromosome 3. Tpi3 and Tpi5 are located on distal ends of the most poorly marked maize chromosome; Tpi3 is 29 cM distal to Idh 1 on 8L, and Tpi5 is on 8S or near the centromere on 8L. In contrast to most duplicated maize sequences, which often occur in parallel linkages on different chromosomes, Tpi3 and Tpi5 provide an example of intrachromosomal gene duplication. Several of the Tpi loci are located in sparsely mapped regions of the genome, and Tpi1 is the first isozyme marker for chromosome 7.  相似文献   

17.
 Fifty natural Datura populations, belonging to eleven species (D. ceratocaula, D. discolor, D. inoxia, D. kymatocarpa, D. lanosa, D. metel, D. pruinosa, D. quercifolia, D. reburra, D. stramonium, D. wrightii) from Mexico and adjacent USA, were investigated using starch gel electrophoresis. A total of 64 alleles were scored at 17 loci (DIA1, DIA2, GOT1, GOT2, G6PDH, IDH, MDH1, MDH2, MDH3, ME, PGD1, PGD2, PGM1, PGM2, PHI, SAD, SOD). The heterozygosity among the species ranged from 0.166 (D. ceratocaula) to 0.276 (D. wrightii). Most genetic diversity was found within populations (average Hs=0.242), while values between populations are relatively low (average Dst=0.066, Gst=0.171). The analysis of the genetic distance suggested new taxonomic relationships among the species. Rather than supporting the conventional infrageneric classification with three sections, the results revealed that the herbaceous members of the genus Datura form four groups. One group included four of the eight species of the section Dutra and was more similar to the section Ceratocaulis than it was to the other group that contained the remaining taxa of Dutra. Received February 13, 2001 Accepted December 25, 2001  相似文献   

18.

Aims

In the past decades the increasing focus by Australian pasture development programs on the genus Lotus has seen the evaluation of many species previously untested in Australia. In field trials, nodulation failure was commonplace. This work was undertaken to select effective symbionts for Lotus to ensure further agronomic evaluation of the genus was not compromised. The symbiotic needs of Lotus ornithopodioides were a particular focus of the studies.

Methods

Glasshouse experiments were undertaken to evaluate symbiotic relationships between 15 Lotus spp and 23 strains of nodulating Mesorhizobium loti. This was followed by evaluation of elite rhizobial strains for their ability to persist and form nodules under field conditions.

Results

Complex symbiotic interactions were recorded between strains of lotus rhizobia and the different species of Lotus. Notably, the rhizobia that are currently provided commercially in Australia for the inoculation of Lotus corniculatus (strain SU343) and Lotus uliginosus (strain CC829) did not form effective symbioses with the promising species L. ornithopodioides and L. maroccanus. No strain we evaluated was compatible with all the Lotus species, however several strains with a broad host range were identified. WSM1293 and WSM1348 were the most effective strains on L. ornithopodioides and L. peregrinus.These strains were also moderately effective on L. corniculatus (79 and 52% of SU343), less effective on L. maroccanus (26 and 49% of SRDI110) but were ineffective on L. uliginosus. The latter species overall had very specific rhizobial needs. Both WSM1293 and WSM1348 produced adequate levels of nodulation when inoculated on L. ornithopodioides, over two seasons at three field sites.

Conclusions

Effective and persistent strains are now available that should allow the un-compromised evaluation of many of the contemporary Lotus species in the field. Selecting a strain for use in commercial inoculants will be more problematic, given the very large host-strain interactions for nitrogen fixation. Here, the balance of Lotus species which are adopted by farmers will have a strong bearing on which rhizobial strains are progressed to commerce.  相似文献   

19.
Eighteen genes were assigned to chromosomes in the sacred baboon, Papio hamadryas, by their concordant segregation with the chromosomes in a set of baboon X Chinese hamster somatic cell hybrids. ACY1 was assigned to P. hamadryas chromosome 2 (PHA 2); SOD1 and MDH2 to PHA 3; ME1 and SOD2 to PHA 4; NP, MPI, PKM2, and HEXA to PHA 7; PP to PHA 9; ADA and ITPA to PHA 10; LDHB and TPI1 to PHA 11; MDH1 to PHA 13; ESD to PHA 17; and GPI and PEPD to PHA 20. Regional assignments were possible for ACY1 (PHA 2pter----q1) and MDH2 and SOD1 (PHA 3p). Five other independently segregating markers or syntenic groups (PGD, PGM1; and PEPC; PGM2 and PEPS; IDH1; LDHA and ACP2; and GSR) were also identified. Gene assignments and syntenic groups described in P. hamadryas are compared to those found in P. papio, the rhesus monkey, and man. A possible primate model for human lymphoid disease is discussed.  相似文献   

20.
The development of early ovules, megasporogenesis, and megagametogenesis in Lotus corniculatus L. (2n = 4x = 24), L. conimbricensis L. (2n = 2x = 12), and their protoplast fusion hybrid were studied. The protoplast fusion hybrid plant was known to be completely male sterile and appeared female sterile. The objectives of this study were to examine the development of the ovules and megagametophytes of the protoplast fusion hybrid of L. corniculatus × L. conimbricensis and to compare the development of the ovules and megagametophytes of the fusion hybrid with that of the parent types. The normal development of the ovules and megagametophytes of L. corniculatus, L. conimbricensis, and their protoplast fusion hybrid were similar to those of several other species of Fabaceae. Approximately 24% of the protoplast fusion hybrid ovules developed into apparently normal megagametophytes beyond the critical reduction divisions. The abortion of ovules in the protoplast fusion hybrid occurred at any stage of megasporogenesis or megagametogenesis, but most abortions appeared to be due to postmeiotic failures. Evidence that normal-appearing megagametophytes of the fusion hybrid are capable of being fertilized and forming zygotes is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号