首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An autoradiographic study of nuclear estrogen binding was performed in developing human urogenital sinuses and vaginas derived from first and second trimester specimens. Nuclear estrogen binding was detected in all specimens greater than or equal to 10 weeks of gestation within mesenchymal cells. Nuclear labelling within epithelium was observed only in those specimens whose development and differentiation was advanced. Thus, mesenchyme appears to be the initial estrogen target tissue within the developing human vagina and may play a fundamental role in estrogen-induced teratogenesis of the human genital tract.  相似文献   

2.
Previous studies from our laboratory demonstrated that normal, but not malignant tissues, contain a ligand which competes for [3H]estradiol binding to nuclear type II sites in the rat uterus. Since elevated nuclear levels of type II sites are correlated with estrogen stimulation of uterine growth and DNA synthesis, we believe this ligand may regulate cell growth. The present studies show that the ligand for nuclear type II sites also interacts with type II sites in uterine cytosol. This was demonstrated by dilution experiments which show that greater quantities of type II sites are measured in dilute (10 mg/ml) than in concentrated (40 mg/ml) uterine cytosol. Furthermore, stripping of uterine cytosol with 1% dextrancoated charcoal, or pre-binding cytosol type II sites to hydroxylapetite (HAP) prior to binding analysis, removed the ligand from these preparations such that high levels of type II sites were measured. Following charcoal stripping, cytosol type II sites demonstrated good specificity for estrogenic hormones but not progesterone, corticosterone, or the triphenylethylene anti-estrogen, nafoxidine. Since the level of type II sites in the cytosol always preceded and exceeded the level of this site measured in uterine nuclei at all times following estrogen treatment (0-96 h), we believe cytosol type II sites may function as an type II-ligand binding protein (LBP) which regulates the availability of the ligand for interaction with nuclear type II sites. This is consistent with our observation that type II sites are not depleted from uterine cytosol by estrogen treatment and nuclear type II sites are very tightly associated with the nuclear matrix.  相似文献   

3.
We have recently demonstrated that methyl p-hydroxyphenyllactate (MeHPLA) is the endogenous ligand for nuclear type II binding sites in the rat uterus and other estrogen target and non-target tissues. MeHPLA binds to nuclear type II binding sites with a very high binding affinity (Kd approximately 4-5 nM), blocks uterine growth in vivo, and inhibits MCF-7 human breast cancer cell growth in vitro. Conversely, the free acid (p-hydroxyphenyllactic acid, HPLA) interacts with type II binding sites with a much lower affinity (Kd approximately 200 nM) and does not inhibit estrogen-induced uterine growth in vivo or MCF-7 cell growth in vitro. On the basis of these observations, we suggested that one way that estrogen may override MeHPLA inhibition of rat uterine growth may be to stimulate esterase hydrolysis of MeHPLA to HPLA. The present studies demonstrate that the rat uterus does contain an esterase (mol. wt approximately 50,000) which cleaves MeHPLA to HPLA, and that this enzyme is under estrogen regulation. This conclusion is supported by the observations that MeHPLA esterase activity is increased 2-3-fold above controls within 2-4 h following a single injection of estradiol, and is maintained at high levels for 16-24 h following hormone administration. This sustained elevation of MeHPLA esterase activity correlates with estradiol stimulation of true uterine growth and DNA synthesis.  相似文献   

4.
Uterine nuclear fractions from estrogen-treated rats contain both the estrogen receptor and a lower affinity estrogen binding site (type II site). In Scatchard plots of estrogen binding, two types of curves are seen. The hook-shaped form is composed of a linear component (the estrogen receptor) and a convex component (the type II site) while the curvilinear form is resolvable into two linear binding species (the estrogen receptor and a secondary site). To clarify the relationship between the two forms, we examined the curvilinear form from immature rats injected for 4 days with estradiol (E2) for type II site properties. Like the hook-shaped type II, this form could be detected in a nuclear exchange assay at both 37 and 4 degrees C, but at neither temperature in the presence of reducing agent. Additionally, the steroid specificity of the curvilinear form was identical to the hook-shaped form. The hook-shaped form was found in both immature and ovariectomized adult rats implanted for 6 days with an E2-releasing Silastic capsule to provide pharmacological E2 levels. When uteri from implanted animals displaying the hook-shaped form were mixed in various ratios with uteri lacking type II sites, the curvilinear form was produced. Animals given an E2 implant for 3 days, followed by a 3 day hormone-free period showed a curvilinear form. In vivo E2 dose-response experiments showed the curvilinear form at low E2 doses and the hook-shaped form at the high dose and in implanted animals. We conclude that curvilinear Scatchard plots result from the presence of authentic type II at lower concentrations than those giving rise to the hook-shaped form.  相似文献   

5.
In order to assess the rat prostate as a target tissue for receptor-mediated estrogen action, we have studied the properties and distributions of estrogen binding sites in the dorsolateral (DLP) and ventral (VP) prostate. Saturation analyses over a wide range of [3H]estradiol ([3H]E2) concentrations (0.5-100 nM) revealed two distinct types of binding sites in the cytosol and nuclear fractions of DLP of intact rats. The high affinity (type I) estrogen binding sites saturated at 2-4 nM of [3H]E2 and had a capacity of 170 fmol/mg DNA in the cytosol and 400 fmol/mg DNA in the nuclei. DLP type I sites had ligand specificity similar to that described for the classical estrogen receptors (ERs) found in female target tissues. The moderate affinity (type II) estrogen binding sites saturated at 15-30 nM of [3H]E2 and had a capacity of 850 fmol/mg DNA in the cytosol and 1600 fmol/mg DNA in the nuclei. DLP type II sites shared some characteristics of the type II ERs described for the rat uterus; they were estrogen specific, heat labile, and sensitive to reducing agents such as dithiothreitol. Saturation analyses on VP cytosols and nuclear fractions revealed only high affinity sites but no moderate affinity sites in the tissue preparations. Our finding that prostatic type II estrogen binding sites are present exclusively in the DLP supports the concept that basic biological differences exist between the two major prostatic lobes of the rat. Furthermore, our findings may help elucidate the observed differences in susceptibility between these two lobes to the hormonal induction of proliferative prostatic lesions.  相似文献   

6.
7.
Interaction of [3H]4-hydroxytamoxifen-charged estrogen receptor [( 3H]AER) with nuclei was compared to that of [3H]17 beta-estradiol-charged estrogen receptor [( 3H]ER) in vitro. Specificity of [3H]AER binding was demonstrated since more than 90% of [3H]AER binding was displaced by ten-fold excess estradiol-charged ER. For R3230AC tumors, the number of [3H]AER binding sites was approximately 40% lower than the number of [3H]ER binding sites. There were no differences in affinity of binding of these receptors complexes (Kd range 0.7-1.6 nM). In contrast 0.7-1.6 nM). In contrast to a reduction of [3H]ER binding after ovariectomy, no difference in the number of [3H]AER binding sites was seen among tumors from intact, ovex, or estrogen-treated ovex rats. These results suggest that [3H]AER bind to 60% of the sites that bind [3H]ER, and that neither tissue type nor host ovarian status affects the number of nuclear [3H]AER binding sites.  相似文献   

8.
Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.  相似文献   

9.
Steroid binding in both the vaginal epithelium and the vaginal fibromuscular wall (FMW) was compared in control and neonatally estrogen-treated mice. Neonatal treatment with a low dose of the estrogen diethylstilbestrol (DES) had no significant effect on adult estrogen binding within the assayed vaginal compartments; however, this treatment caused a 2-fold increase in the level of cytosolic progestin binding in the vaginal FMW over that in vehicle-treated mice. This low neonatal dose did not affect the level of progestin binding in the vaginal epithelium. In contrast, neonatal treatment with a larger dose of DES caused marked increases in cytosolic progestin binding, decreases in cytosolic estrogen binding, and increases in nuclear estrogen binding within the FMW. Furthermore, as a result of the changes in specific binding induced by the neonatal DES treatment, the degree of the estrogen binding within in each tissue shifted from a predominantly cytosolic site to a nuclear one.  相似文献   

10.
We report a gel-filtration-based chromatographic method for separation of specific, nonspecific, and free radioligand in a protein receptor-ligand binding assay for the example of the estrogen receptor ERalpha. This assay affords relative binding affinities (RBAs) without the need for a separate determination of nonspecific binding. The probit method is recommended as the most satisfactory method of evaluating the data. The assay responds to both estrogen agonists and antagonists, mixtures respond additively, and the slopes of the probit plots indicate that all ligands bind to the same site on the estrogen receptor. RBAs obtained with rat and rainbow trout ERalpha were in good agreement, and also with those from other reported assays, consistent with the interspecies conservation of key regions of the ligand binding domain among estrogen receptors.  相似文献   

11.
Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of microsomal binding sites extracted. These observations suggest three possible roles for the microsomal receptor-like proteins: (a) modulation of estrogen access to nuclear binding sites; (b) formation of functional complexes which diffuse to other extranuclear sites to alter non-genomic cellular processes; (c) regulation of nuclear concentration of estrogen-receptor complexes by virtue of producing microsomal acceptor sites for uptake of free or loosely associated nuclear complexes, previously thought to exist in the cytoplasm.  相似文献   

12.
A rapid method for simultaneous preparation of cytosol and nuclear estrogen (E) and progestin (P) receptors and their in vitro determination is described. The method was applied to several uterine or ovarian surgical specimens to evaluate their steroid hormone "dependence". The results suggest that low cytoplasmic E receptor levels (ERc) are associated with higher nuclear E receptor (ERn) levels but no apparent correlation was observed between PRc and ERn levels. The method appeared to be suitable for screening steroid hormone receptor content in tumor tissues and may provide better estimation of steroid dependence since both cytoplasmic and nuclear compartments can be studied simultaneously.  相似文献   

13.
14.
MCCLX is a transplantable rat mammary tumor which, for sustained growth, requires the elevated levels of circulating lactogen provided by pregnancy or the implantation of an estrogen pellet. High affinity receptors for estradiol, as well as for the glucocorticoids, dexamethasone and triamcinolone acetonide and the progestin R5020 were measured in the cytosols of these tumors. Estrogen binding capacities were significantly lower in the cytosols of tumors from estrogen pellet treated animals compared with tumors from pregnant animals. Ligand exchange assays demonstrated that nuclei of tumors from estrogen-treated rats contained 3-4 times the estrogen receptors but that there was a definite decrease in total estrogen binding capacity compared with tumors from pregnant rats. It was concluded that this lactogen-dependent tumor contains steroid receptors with molecular properties similar to those of normal target tissues, including estrogen receptors capable of nuclear translocation, the levels of which are modulated by the specific growth conditions.  相似文献   

15.
16.
17.
Exposure of hamsters to short days increases sensitivity to the negative feedback effects of testosterone (T) but decreases responsiveness to the behavioral effects of the hormone. Since T is metabolized in the brain to 5 alpha-dihydrotestosterone (DHT) and estradiol, which differentially affect gonadotropin secretion and sex behavior, it is reasonable to postulate that daylength can modulate neural responses by quantitative or qualitative alterations in T metabolism and subsequent receptor binding of active hormone. Experiments reported here focused on aromatization and the nuclear accumulation of estrogen receptors. Adult male hamsters were maintained for 6-12 wk in long (14:10 LD) or short (8:16 LD) daily photoperiods. Both intact and castrated animals were used to assess direct effects of short days versus changes due to short-day-induced testicular regression. Discretely dissected regions of the brain (preoptic area, POA; hypothalamus, HTH; and corticomedial amygdala, CMA) or limbic blocks (LIM) comprised of all three regions were assayed for estrogen-synthesizing activity (aromatase) and estrogen-binding activity (receptors). Aromatase was estimated in vitro by conversion of [7-(3)H] androstenedione to [3H] estrogen and in vivo by measuring increases in nuclear estrogen receptor levels after injection of aromatizable androgen. Receptor-binding activity was assayed in crude cytosolic and nuclear extracts by incubating samples with [3H] estradiol +/- 100-fold excess inert estradiol, and separating free and bound steroids by Sephadex LH-20 gel filtration. When aromatase was assayed in homogenates prepared from discrete brain regions of individual hamsters, significantly lower activity was found in the HTH of short-day animals than in long-day controls. This effect was seen in both intact and castrated animals, which indicates that it was not mediated by the testis. Decreased enzyme activity in the POA and CMA of short-day hamsters was not significant, nor was there an effect of castration independent of short days. Low levels of nuclear estrogen receptors were present in LIM of intact males, but these were reduced after castration or concomitant with testicular regression after short-day exposure. This suggests that the hamster testis normally secretes estrogen or aromatizable androgen. A single injection of estradiol or aromatizable androgen (T or androstenedione) increased nuclear receptors in LIM of castrated animals. Cytosolic receptors were not different in short-day vs. long-day hamsters, nor were there differences in nuclear receptor levels after a single estradiol injection.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Previous work has demonstrated that estrogen administration to immature chickens results in a rapid but transient increase in nuclear estrogen receptor content, a large portion of which is associated with the nuclear matrix. The present studies were undertaken to determine whether estrogen produced a more generalized change in the protein composition of the nuclear matrix. High-resolution two-dimensional gel analysis of the matrix revealed a very complex protein pattern, but several major qualitative differences were observed after estrogen treatment. To simplify the number of proteins evaluated, we examined the effects of estrogen on a subset of matrix proteins, namely, calmodulin and its binding proteins. Calmodulin was measured by radioimmunoassay and the binding proteins were detected by interaction of 125I-calmodulin with matrix proteins distributed on one-dimensional polyacrylamide gels. Calmodulin and two specific Ca2+-dependent calmodulin-binding proteins were found to be associated with matrix preparations. The two binding proteins exhibited apparent Mr of 200,000 and 130,000. The Mr 130,000 protein was identified as myosin light chain kinase on the basis of enzymatic activity and immunoreactivity with a specific antibody to this enzyme. Estrogen treatment of immature chickens did not alter the hepatic content of calmodulin. However, the steroid did result in an enrichment of the proportion of calmodulin and its two binding proteins associated with the nuclear matrix within 4 h after injection. The time course of these changes paralleled those previously documented for estrogen receptor. Taken together, these data are compatible with a role for calmodulin and myosin light chain kinase in the response of chicken liver cells to steroid hormones.  相似文献   

19.
Distribution of estrogen receptors among ligand-occupied and unoccupied species in cytosolic and nuclear subcellular compartments has been analyzed as an acute response to administration of 5 micrograms of estradiol in adult female rats. Patterns of anterior pituitary and uterine receptor turnover were monitored at intervals over a 5-h period, using either intact or 2-weeks ovariectomized animals. In terms of total cellular receptor content, initial levels were higher in castrate animals, but rapidly fell to intact levels within an hour following estradiol injection. Cycloheximide given shortly before estradiol had no effect on total pituitary receptor patterns, but appeared to result in an elevation in total uterine receptor content at early intervals. Unoccupied cytosol receptors were rapidly depleted and, with the exception of castrate pituitary samples, showed some replenishment within 5 h, all of which was cycloheximide-sensitive. Initially, occupied cytosol receptors were low in intact rats, but were present at levels approaching those of the unoccupied cytosol receptor forms in the ovariectomized rat tissues. Occupied cytosol receptor levels fluctuated in response to estradiol. Subpopulations of nuclear receptors, especially the unoccupied species, showed significant tissue specificity. In the uterus, unoccupied nuclear forms were initially present in high amounts, and the levels did not change in response to estradiol administration. In the pituitary, the levels of these receptors rose and subsequently fell over the 5-h interval. Cycloheximide conferred a similar biphasic response to estradiol upon the otherwise insensitive unoccupied nuclear forms of the uterus. Occupied nuclear receptors turned over completely during the 5-h study interval, with the kinetics being faster in the castrate than the intact tissues. Cycloheximide affected occupied nuclear forms of the uterus only, dramatically increasing their levels in response to estrogen and causing prolonged retention in the castrate animal model. Collectively, the cycloheximide effects on this system are consistent with early estrogen induction or stimulation of a protein which inhibits accumulation of occupied or unoccupied receptor species within the nucleus. This re-examination of all forms of cellular estrogen receptors as they fluctuate acutely in response to exogenous estrogen has revealed several heretofore undetected responses which must be incorporated into the overall scheme of early estrogen action.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号