首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
NADH oxidation by quinone electron acceptors   总被引:1,自引:0,他引:1  
The rate constants of NADH oxidation by quinones are increased with the oxidation potential increase: log kox (M-1 X s-1) = -0.25 + 12.2 E0(7) (V) for o-quinones and log kox (M-1 X s-1) = -3.06 + 13.5 E0(7) (V) for p-quinones (pH 7.0, 25 degrees C). It is assumed that the oxidation proceeds via the hydride-ion transfer. The rate constants of NADH oxidation by single-electron quinone acceptors are also increased with the oxidizer potential increase; log kox (M-1 X s-1) = -0.64 + 9.34 E0(7) (V) and correlate with the constants of NADH oxidation by quinone radicals obtained earlier (Grodkowski, J., Neta, P., Carlson, B.W. and Miller, L. (1983) J. Phys. Chem. 87, 3135-3138). Single-electron transfer is the limiting stage of the process.  相似文献   

2.
The relationship between the NADH:lipoamide reductase and NADH:quinone reductase reactions of pig heart lipoamide dehydrogenase (EC 1.6.4.3) was investigated. At pH 7.0 the catalytic constant of the quinone reductase reaction (kcat.) is 70 s-1 and the rate constant of the active-centre reduction by NADH (kcat./Km) is 9.2 x 10(5) M-1.s-1. These constants are almost an order lower than those for the lipoamide reductase reaction. The maximal quinone reductase activity is observed at pH 6.0-5.5. The use of [4(S)-2H]NADH as substrate decreases kcat./Km for the lipoamide reductase reaction and both kcat. and kcat./Km for the quinone reductase reaction. The kcat./Km values for quinones in this case are decreased 1.85-3.0-fold. NAD+ is a more effective inhibitor in the quinone reductase reaction than in the lipoamide reductase reaction. The pattern of inhibition reflects the shift of the reaction equilibrium. Various forms of the four-electron-reduced enzyme are believed to reduce quinones. Simple and 'hybrid ping-pong' mechanisms of this reaction are discussed. The logarithms of kcat./Km for quinones are hyperbolically dependent on their single-electron reduction potentials (E1(7]. A three-step mechanism for a mixed one-electron and two-electron reduction of quinones by lipoamide dehydrogenase is proposed.  相似文献   

3.
Lipoamide dehydrogenase, a component of the bovine adrenal ketoglutarate dehydrogenase complex, catalyzes the oxidation of NADH by p-quinones and ferricyanide. The kinetics of oxidation obey the ping-pong mechanism. At pH 7.0, the constants for the active center oxidation by quinones (kox) are equal to 1.1 X 10(4)-5.3 X 10(5) M-1s-1 and increase as the acceptor potential rises. The values of kox for quinones change insignificantly within the pH range of 7.7-5.0, whereas that for ferricyanide increases 10-fold with a decrease of pH from 7.0 to 5.0. The value of the catalytic constant for the enzyme (kcat) reaches its maximum at pH 5.5. The quinones interact with the thiol groups of lipoamide dehydrogenase by inhibiting the fluorescence of FAD and diaphorease activity. The reaction is catalyzed by a basic amino acid (pK 6.7) within the composition of the enzyme.  相似文献   

4.
1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme.  相似文献   

5.
Various approaches to promote the one-electron transfer reaction of lipoamide dehydrogenase have been investigated. An addition of riboflavin facilitates the electron transfer between NADH and Fe(CN)63?. Aminocarboxymethylation and cadmium derivatization of the catalytic disulfide moderately activate the electron transfer reaction. An enhancement in the electron transferase activity of the Co(II)-enzyme complex is associated with decreased Michaelis and inhibition constants. Phosphopyridoxamidation identifies the suppressive effect on the electron transferase activity of carboxyl groups proximal to the catalytic histidine residue of lipoamide dehydrogenase. Amidation of these carboxyl groups with diamine greatly promote the one-electron transfer reaction. The increased electron transferase activity of the amidated enzyme is related to the charge nature of the amidated nucleophile and associated with the increased catalytic efficiency which undergoes a shift in the pH profile. The introduction of cationic aminoethyl groups presumably encourages the formation of an anionic flavosemiquinone which promotes the one-electron transfer reaction.  相似文献   

6.
7.
Summary A hamster cheek pouch model has been used to study the diffusion of reactants from the epithelium into adjacent muscle and connective tissue during the histochemical demonstration of glucose-6-phosphate dehydrogenase activity. The effects of the addition of intermediate electron acceptors to the incubation medium varied considerably from one acceptor to another, but were independent of the grade of polyvinyl alcohol incorporated into the medium. Menadione was the least effective intermediate both in transferring reducing equivalents from the primary dehydrogenase to Neotetrazolium chloride and in preventing diffusion. Phenazine methosulphate, Methylene Blue and Thionin were more efficient intermediates. Nevertheless, considerable diffusion occurred in the presence of Phenazine methosulphate, although very little diffusion was detectable with either of the thiazine dyes. It is suggested that these differences are related to different modes and sites of action of the carriers.  相似文献   

8.
The hydrolytic activity of F1-ATPase isolated from rat liver was enhanced in the presence of NADH, FADH2, QH2 or reduced cyt c. The extent of this activation depended largely on substrate concentration. F1-ATPase sensitivity to bicarbonate or dinitrophenol activators decreased in the presence of any of those electron donors, which originated as well a slight sensitivity to oligomycin and a sensitivity increase to the inhibitory anion OCN-. In the presence of oxidized carriers the sensitivity to bicarbonate, dinitrophenol, or OCN- was not modified, and the enzyme remained oligomycin insensitive.  相似文献   

9.
10.
The effect of Dipyridamole (10(-6)-10(-3) M) on the photomobilized electron transport in the system of quinone acceptors Q(A)-Q(B) of isolated photosynthetic reaction centers of Rhodobacter sphaeroides and on its temporary stabilization on Q(B) was studied. Depending on the type of the detergent present in the reaction center (lauryl dimethylamine oxide, Triton X-100, sodium dodecyl sulfate, and sodium cholate), dipyridamole could increase the time of the electron transfer to Q(B). The dipyridamole effect on the efficiency of the electron stabilization on Q(B) for reaction centers with different detergents was revealed in slowing down the process of dark reduction of photoactive bacteriochlorophyll from Q(B) at initial concentrations of added dipyridamole (10(-6)-10(-5) M) with following acceleration of the process at the dipyridamole concentrations of 10(-4)-10(-3) M. The pH lowering from 6.8-7.0 to 5.9-6.0 increased the dipyridamole effect. The possibility of the dipyridamole effect on the structural-dynamic state of the reaction center complex, including its hydrogen bond system, which influences the studied parameters of functional activity, is suggested.  相似文献   

11.
Polarized absorption microspectrophotometry has been used to detect catalysis and intermolecular electron transfer in single crystals of two multiprotein complexes: (1) the binary complex between Paracoccus denitrificans methylamine dehydrogenase, which contains tryptophan-tryptophylquinone (TTQ) as a cofactor, and its redox partner, the blue copper protein amicyanin; (2) the ternary complex between the same two proteins and cytochrome c-551i. Continuous wave electron paramagnetic resonance has been used to compare the state of copper in polycrystalline powders of the two systems. While catalysis and intermolecular electron transfer from reduced TTQ to copper are too fast to be accessible to our measurements, heme reduction occurs over a period of several minutes. The observed rate constant is about four orders of magnitude lower than in solution. The analysis of the temperature dependence of this apparent constant provides values for the parameters H(AB), related to electronic coupling between the two centers, and lambda, the reorganizational energy, that are compatible with electron transfer being the rate-determining step. From these parameters and the known distance between copper and heme, it is possible to calculate the parameter beta, which depends on the nature of the intervening medium, obtaining a value typical of electron transfer across a protein matrix. These findings suggest that the ternary complex in solution might achieve a higher efficiency than the rigid crystal structure thanks to an as yet unidentified role of protein dynamics.  相似文献   

12.
The reduction kinetics of the photo-oxidized primary electron donor P700 in photosystem I (PS I) complexes from cyanobacteria Synechocystis sp. PCC 6803 were analyzed within the kinetic model, which considers electron transfer (ET) reactions between P700, secondary quinone acceptor A1, iron-sulfur clusters and external electron donor and acceptors – methylviologen (MV), 2,3-dichloro-naphthoquinone (Cl2NQ) and oxygen. PS I complexes containing various quinones in the A1-binding site (phylloquinone PhQ, plastoquinone-9 PQ and Cl2NQ) as well as F X-core complexes, depleted of terminal iron–sulfur F A/F B clusters, were studied. The acceleration of charge recombination in F X-core complexes by PhQ/PQ substitution indicates that backward ET from the iron–sulfur clusters involves quinone in the A1-binding site. The kinetic parameters of ET reactions were obtained by global fitting of the P700 + reduction with the kinetic model. The free energy gap ΔG 0 between F X and F A/F B clusters was estimated as ?130 meV. The driving force of ET from A1 to F X was determined as ?50 and ?220 meV for PhQ in the A and B cofactor branches, respectively. For PQ in A1A-site, this reaction was found to be endergonic (ΔG 0?=?+75 meV). The interaction of PS I with external acceptors was quantitatively described in terms of Michaelis–Menten kinetics. The second-order rate constants of ET from F A/F B, F X and Cl2NQ in the A1-site of PS I to external acceptors were estimated. The side production of superoxide radical in the A1-site by oxygen reduction via the Mehler reaction might comprise ≥0.3% of the total electron flow in PS I.  相似文献   

13.
14.
15.
T C Lehman  C Thorpe 《Biochemistry》1990,29(47):10594-10602
Medium-chain acyl-CoA dehydrogenase reduced with octanoyl-CoA is reoxidized in two one-electron steps by two molecules of the physiological oxidant, electron transferring flavoprotein (ETF). The organometallic oxidant ferricenium hexafluorophosphate (Fc+PF6-) is an excellent alternative oxidant of the dehydrogenase and mimics a number of the features shown by ETF. Reoxidation of octanoyl-CoA-reduced enzyme (200 microM Fc+PF6- in 100 mM Hepes buffer, pH 7.6, 1 degree C) occurs in two one-electron steps with pseudo-first-order rate constants of 40 s-1 and about 200 s-1 for k1 and k2, respectively. The reaction is comparatively insensitive to ionic strength, and evidence of rate saturation is encountered at high ferricenium ion concentration. As observed with ETF, the free two-electron-reduced dehydrogenase is a much poorer kinetic reductant of Fc+PF6-, with rate constants of 3 s-1 and 0.3 s-1 (for k1 and k2, respectively) using 200 microM Fc+PF6-. In addition to the enoyl-CoA product formed during the dehydrogenation of octanoyl-CoA, binding a number of redox-inert acyl-CoA analogues (notably 3-thia- and 3-oxaoctanoyl-CoA) significantly accelerates electron transfer from the dehydrogenase to Fc+PF6-. Those ligands most effective at accelerating electron transfer favor deprotonation of reduced flavin species in the acyl-CoA dehydrogenase. Thus this rate enhancement may reflect the anticipated kinetic superiority of anionic flavin forms as reductants in outer-sphere electron-transfer processes. Evidence consistent with the presence of two distinct loci for redox communication with the bound flavin in the acyl-CoA dehydrogenase is presented.  相似文献   

16.
1. Glutathione reductase and lipoamide dehydrogenase are structurally and mechanistically related flavoenzymes catalyzing various one and two electron transfer reactions between NAD(P)H and substrates with different structures. 2. The two enzymes differ in their coenzyme and functional specificities. Lipoamide dehydrogenase shows higher coenzyme preference while glutathione reductase displays greater functional specificity. 3. Binding preference of the two flavoenzymes for nicotinamide coenzymes is demonstrated by 31P-NMR spectroscopy. 4. The presence of arginines in glutathione reductase which is inactivated by phenyl glyoxal, is likely to be responsible for the NADPH-activity of glutathione reductase. 5. The substrate binding sites of the two enzymes are similar, though their functional details differ. 6. The active-site histidine of glutathione reductase functions primarily as the proton donor during catalysis. While the active-site histidine of lipoamide dehydrogenase stabilizes the thiolate anion intermediate and relays a proton in the catalytic process.  相似文献   

17.
18.
19.
A novel reaction catalysed by lipoamide dehydrogenase is described. In the presence of NADH, lipoamide dehydrogenase reduces the nitro group of 4-nitropyridine and 4-nitropyridine N-oxide. The elution profiles from a DEAE-cellulose column for the dehydrogenase and nitroreductase activities are identical. Chemical modifications of critical amino acid residues suggest that the two activities share a common catalytic domain. Nitro reduction catalysed by lipoamide dehydrogenase was monitored spectrophotometrically and chromatographically. The major product from the enzymic reduction of 4-nitropyridine was isolated and characterized structurally as NN-bis(pyridinyl)hydroxylamine, which is formed presumably via 4-hydroxyaminopyridine in a four-electron redox reaction.  相似文献   

20.
The interaction between lipoamide dehydrogenase (E3) and dihydrolipoyl transacetylase (E2p) from the pyruvate dehydrogenase complex was studied during the reconstitution of monomeric E3 apoenzymes from Azotobacter vinelandii and Pseudomonas fluorescens. The dimeric form of E3 is not only essential for catalysis but also for binding to the E2p core, because the apoenzymes as well as a monomeric holoenzyme from P. fluorescens, which can be stabilized as an intermediate at 0 degree C, do not bind to E2p. Lipoamide dehydrogenase from A. vinelandii contains a C-terminal extension of 15 amino acids with respect to glutathione reductase which is, in contrast to E3, presumably not part of a multienzyme complex. Furthermore, the last 10 amino acid residues of E3 are not visible in the electron density map of the crystal structure and are probably disordered. Therefore, the C-terminal tail of E3 might be an attractive candidate for a binding region. To probe this hypothesis, a set of deletions of this part was prepared by site-directed mutagenesis. Deletion of the last five amino acid residues did not result in significant changes. A further deletion of four amino acid residues resulted in a decrease of lipoamide activity to 5% of wild type, but the binding to E2p was unaffected. Therefore it is concluded that the C-terminus is not directly involved in binding to the E2p core. Deletion of the last 14 amino acids produced an enzyme with a high tendency to dissociate (Kd approximately 2.5 microM). This mutant binds only weakly to E2p. The diaphorase activity was still high. This indicates, together with the decreased Km for NADH, that the structure of the monomer is not appreciably changed by the mutation. Rather the orientation of the monomers with respect to each other is changed. It can be concluded that the binding region of E3 for E2p is constituted from structural parts of both monomers and binding occurs only when dimerization is complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号